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ABSTRACT

The use of symmetrical number systems and wideband technologies is investigated to develop
novel concepts for use in electronic warfare (EW) receivers. A computationally efficient algo-
rithm for determining the dynamic range of the robust symmetrical number system (RSNS) is
used to derive additional closed-form expressions for the RSNS dynamic range, using a curve-
fitting method. A photonic direction-finding array employing dual-electrode Mac-Zehnder
modulators with RSNS preprocessing is developed and validated through simulations and exper-
imental testing. Additional EW receiver concepts using the symmetrical number system (SNS)
and CS are also examined. An SNS-CS cueing receiver is proposed that places a multichan-
nel undersampling receiver, based on the SNS, into a CS framework and applies CS recovery
algorithms to resolve the signal’s frequency components. The SNS-CS cueing receiver’s per-
formance is evaluated through Monte Carlo simulations. The final concept examined is a multi-
channel Nyquist folding receiver (NYFR) with SNS-based uniform sampling rates (NYFR-B).
The NYFR-B’s performance is evaluated through Monte Carlo simulations and performance
curves are presented.
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Executive Summary

Threat weapon system sensors and missile seekers continue to evolve by adopting wide band-
width low-probability-of-intercept signals and by migrating to the millimeter wavelength band
as missile seekers adopt imaging radar technology to discriminate between targets and decoys.
As a result, electronic warfare (EW) receivers are required to monitor an increasingly wide
bandwidth, stressing the capabilities of existing EW receivers. To reduce analog hardware
requirements and eliminate the inter-modulation products that result from down converting mi-
crowave (MW) signals, digital receiver trends have been towards direct digitization. How-
ever, the bandwidth (BW) and resolution of current analog-to-digital converter (ADC) tech-
nology [1]–[4] limits the ability to directly digitize MW signals. Wideband technologies have
been adopted in EW receivers including photonics, compressive sensing (CS), and the use of
symmetrical number systems to address the limitations of ADC technology.

In MW photonics, the Mach-Zehnder modulator (MZM) using LiNbO3 technology plays a
significant role in modern direction finding (DF) and digital receiver architectures. Several
applications of the MZM in DF arrays are presented in the literature. In [5], the MZM is
used in a wideband fiber-optic DF application as an optical down conversion circuit at the
antenna. Another photonic approach is used to measure the direction-of-arrival (DOA) for a
MW signal by cascading two MZMs as discussed in [6]. Similarly, CS has been introduced to
combine sampling and compression into a single operation to allow the recovery of sparse high-
dimensional signals from incomplete measurements through the use of efficient algorithms [7].
Wideband receivers suitable for EW applications using CS techniques have been introduced in
literature. The majority of the CS receivers introduce randomness into the sampling process
to provide theoretical assurances that the recovery algorithm will accurately recover the sparse
signal. Examples of these receivers include: a random demodulator [8], random filtering [9],
random sampling [10], and a compressive multiplexer [11]. Other CS receiver architectures take
advantage of the structure of the signal space such as the modulated wideband converter [12],
[13], Nyquist folding receiver (NYFR) [14]–[16], and nonlinear affine signal processing [17].

Other methods explored to resolve frequency aliasing involve the use of multi-channel under-
sampling with coprime sampling rates. Symmetrical number systems based on a set of coprime
moduli were developed to extract information from symmetrical folding waveforms that ap-
pear frequently in nature. Symmetrical number systems include the symmetrical number sys-
tem (SNS) that was demonstrated to have the same structure as the discrete Fourier transform
(DFT) for real signals [18], [19] and the robust symmetrical number system (RSNS) that has an
inherent integer Gray code property allowing error detection and correction [20]–[23]. Both the
SNS and RSNS have found many applications including DF arrays, undersampling receivers,
and ADCs.

In this work, several wideband EW receiver concepts are developed that combine the use of
symmetrical number systems with photonics and CS. The first concept investigates a four-
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element photonic DF array with RSNS preprocessing using dual electrode MZMs (DE-MZMs)
in an phase interferometry application. This concept is developed theoretically and verified
through simulation and experimental testing. Closed-form analytical expressions for the dy-
namic range of the RSNS M̂RSNS are also developed for several families of coprime moduli
sets through the application of a computationally efficient search algorithm. Two EW receiver
concepts are also examined that use the SNS in CS receiver architectures. The first concept
applies CS theory and recovery algorithms to a multi-channel undersampling receiver based on
the SNS in a cueing receiver application. The SNS is also applied to a multi-channel NYFR
architecture allowing determination of the SNS residues via a fast Fourier transform (FFT) and
resolving frequency ambiguities through the properties of the SNS and the NYFR.

Background
Compressive Sensing
Compressive sensing is a new area of digital signal processing that allows sampling a signal
that is sparse in some orthonormal basis at a rate much lower than the Nyquist sampling rate
and enables the successful recovery of the signal via convex optimization algorithms or greedy
algorithms. Compressive sensing can be viewed as combining sampling and compression into
one operation and can be mathematically expressed as

y = Ax, (1)

where the measurement vector y is an L×1 vector, x is the N×1 signal vector which is sparse,
and A is an L×N sensing matrix [24]. The sensing matrix A is

A = ΦΨ (2)

where Ψ is N×N orthonormal basis matrix and Φ is the L×N measurement basis matrix.

In order to recover x, A must satisfy the restricted isometry principle (RIP) which is equivalent
to the matrices Φ and Ψ being incoherent. It was proven that sensing matrices based on Gaus-
sian or Bernoulli distributions satisfy RIP and can recover an S-sparse signal x provided [24]

L≥CS ln(N/S). (3)

It was also demonstrated that if sensing matrices are formed by randomly selecting the rows of
an unitary DFT matrix that RIP is statistically satisfied if [25]

L> S lnN. (4)

Symmetrical Number Systems
The SNS is a modular number system that consists of N separate periodic symmetrically folded
sequences based on a set of coprime moduli mi = {m1,m2, . . . ,mN}. Each SNS sequence is
periodic and consists of a row vector of the symmetrical residues defining the sequence,

bm =

{[
0,1, . . . ,

⌊m
2

⌋
,
⌊m

2

⌋
, . . . ,2,1

]
, m is odd[

0,1, . . . , m
2 ,

m
2 −1, . . . ,2,1

]
, m is even

(5)
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where b•c is the floor operator [18]. Each integer h is represented by a vector Bh = [b1
h,b

2
h, . . . ,b

N
h ]

T

composed of the N symmetrical residues for that integer. The symmetrical residues for a SNS
with mi = {3,4}, are listed in Table 1. The ambiguous results are annotated in Table 1 using
bold font. The span of integer values where each vector, Bh, uniquely defines an integer is the
dynamic range of the SNS M̂SNS which is defined in [18].

Table 1: Symmetrical Number System for mi = {3,4}.
q 0 1 2 3 4 5 6 . . .

mi = 3 0 1 1 0 1 1 0 . . .

mi = 4 0 1 2 1 0 1 2 . . .

←− M̂SNS −→

The property of the SNS that makes it powerful in resolving single frequency ambiguities re-
sulting from aliasing due to undersampling is the direct mapping of the symmetrical residues of
the SNS into the DFT digital frequencies for real signals. This property is demonstrated in an
undersampling receiver architecture in [18].

Another powerful symmetrical number system is the RSNS. The RSNS is a modular-based
number system consisting of N ≥ 2 integer sequences with each sequence associated with a
coprime modulus. The RSNS is based on the following sequence:

{
x
′
m

}
= [0,1,2, . . . ,m−1,m,m−1, . . . ,2,1] . (6)

To form the N−sequence RSNS, each term in Equation (6) is repeated N times in succession.
Therefore, the integers within one folding period of a sequence are:

{xm}=[0, . . . ,0,1,1, . . .1, . . .m−1, . . . ,m−1,
m, . . .m,m−1, . . . ,m−1, . . . ,1, . . .1].

(7)

This results in a periodic sequence with a period of Pm = 2Nm [21], [26]. Each sequence
corresponding to mi is also shifted left (or right) by si = i−1 where i∈ {1,2 . . . ,N} and the shift
values, si = {s1,s2, . . .sN}, form a complete residue system modulo N. The resulting structure
of the N sequences ensures that two successive RSNS vectors when considered together, differ
by only one integer resulting in an integer Gray code property [21].

Each RSNS sequence is extended periodically with period, 2Nm, as xh+n2Nm = xh, where n ∈
{0,±1,±2, . . .}. Therefore, xh is a symmetrical residue of (h+n2Nm) modulo 2Nm. An integer
h is represented by a vector, Xh =

[
x1,h,x2,h, . . . ,xN,h

]T , of N paired integers from each sequence
at h. An example of a left shifted N = 3 RSNS with mi = {3,4,5} is displayed in Table 2.

Closed-form expressions for the dynamic range of the RSNS M̂RSNS exists for only few specific
cases. In [20], [21], a closed-form expression for two-sequence RSNSs is reported. The other
published closed-form expression for M̂RSNS is for three-sequence RSNSs when mi = {m−
1,m,m+1} with m even and m> 3 [21], [27].
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Table 2: Three-sequence RSNS structure for mi = {3,4,5}, after [21]
h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

Xh

m1 = 3 0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1 . . .

m2 = 4 0 0 1 1 1 2 2 2 3 3 3 4 4 4 3 3 3 . . .

m3 = 5 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 4 . . .

Closed-Form Expressions for M̂RSNS

A computationally efficient search algorithm for determining M̂RSNS is presented, and its com-
putational complexity is derived and compared to that of a naïve search algorithm. The com-
plexity of the efficient algorithm is shown to be independent of the moduli values. Additional
closed-form expressions were derived by generating data sets for different families of coprime
moduli through use of the efficient algorithm. The data was curve fitted to determine closed-
form analytical expressions for M̂RSNS, and the resulting analytical expressions were verified to
satisfy the theoretical solutions to the congruence equations defining the ambiguity locations
for the beginning and ending points of the sequence defining M̂RSNS.

The additional closed-form expressions for M̂RSNS for three-sequence RSNSs are summarized in
Table 3. Also, closed-form expressions were developed and verified for four-sequence RSNSs
that are summarized in Table 4. Future research in this area includes developing additional
specific closed-form expressions for M̂RSNS with the aim of developing a general closed-form
expression for an arbitrary set of N coprime moduli.

Table 3: New closed-form expressions for M̂RSNS for three-sequence RSNSs, from [28].

mi M̂RSNS m

{m−1,m+1,m+3}
3
2m2 + 15

2 m+7 m≡ 0 mod 4
3
2m2 + 15

2 m+5 m≡ 2 mod 4

{m,m+1,m+3} 3
2m2 + 27

2 m+6 m≡ 2 mod 4 and m≥ 14

{m−3,m+1,m} 3
2m2 + 3

2m m is even and m 6= 6k where k = 1,2, . . .

{m,m+4,m+8}

9
4m2 + 63

4 m+48 m≡ 1 mod 8
3
2m2 + 33

2 m+35 m≡ 3 mod 8
3
2m2 + 33

2 +34 m≡ 5 mod 8
9
4m2 + 57

4 m+45 m≡ 7 mod 8
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Table 4: Closed-form expressions for M̂RSNS for four-sequence RSNSs, from [28].

mi M̂RSNS m

{m−1,m,m+2,m+4} 10m2 +6m+20 m≡ 3 mod 6 or m≡ 5 mod 6 with
m≥ 15 and m 6= {29,33}

{m,m+1,m+2,m+4} 10m2 +22m+20 m≡ 1 mod 6 or m≡ 3 mod 6 and
m≥ 15

{m,m+2,m+3,m+4} 10m2 +30m−6 m = {25+12k,29+12k,31} where
k = 0,1,2, · · ·,

10m2 +30m−8 m = {43+12k,47+12k} and
k = 0,1,2, · · ·

{m,m+2,m+4,m+5} 10m2 +54m+20 m≥ 39, gcd(m,5) = 1, and m is odd

{m,m+2,m+4,m+6} 10m2 +38m+56 m≥ 13 and gcd(m,3) = 1

Photonic Direction Finding Array with RSNS Preprocessing
For the two-element photonic DF linear array shown in Figure 1, the DOA of a MW emitter
is determined by detecting the phase difference between the narrow band signals received at a
reference antenna element and a measurement antenna element separated by a distance d. The
phase angle ψ between the signals arriving at the two antennas is related to the DOA θ by

ψ =
2π
λ

d sinθ , (8)

where λ is the wavelength of the incident MW signal. The normalized value of Vout can be
approximated as

Vout

max(Vout)
≈ |sin(ψ/2)| (9)

and can be used to determine the DOA, provided the input signal magnitude V � Vπ where
Vπ is the half-wave switching voltage of the dual electrode DE-MZM. This theoretical result
was verified through simulation results that are presented in Figure 2. Equation (9) is used to
design and test a four-element photonic DF array with RSNS preprocessing. Simulations and
experimental testing were conducted to validate the concept.

The theoretical transfer function of the array and the experimental results are shown in Figure 3.
Invalid RSNS codes resulted for θ = {−24.6,−10.4,−10.2,−7.8,7.6,15.2,60} and were set
to 0 deg. Note that the use of the RSNS preprocessing quantizes the DOA and that the an-
gular resolution of the DOA bins is reduced as the DOA moves from broadside. The error
between the estimated DOA and the actual DOA is plotted in Figure 4 along with the envelope
of the theoretical maximum error signal. The results demonstrate that the DE-MZM can be used
in phase interferometry applications and the viability of a wideband photonic DF array using
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Figure 1: Block diagram of a two-element photonic DF linear array. Abbreviations used in diagram ,
photo detector (PD), DC blocking capacitor (DC BLK), envelope detector (ENV DET), continuous
wave (CW).

Figure 2: Normalized transmission coe�cient vs. phase angle for DE-MZM biased at quadrature
point, Vb =Vπ/2. Red solid line graphs the theoretical results, the blue dashed line plots the simulation
results.

RSNS preprocessing. Additional research is required to mature this concept including imple-
mentation and testing of the array using wideband components and integration with a wideband
EW receiver.

SNS - CS Cueing Receiver
A novel SNS-CS cueing receiver architecture is presented that allows signal frequency iden-
tification in a sparse signal environment. The SNS-CS cueing receiver forms a measurement
vector y by collating the samples obtained through coprime undersampling with sampling rates
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Figure 3: Theoretical DF array transfer function v.s. experimental results is displayed in (a), (b) and
(c) display details of (a).

equal to the SNS moduli mi. The SNS-CS cueing receiver also forms a deterministic partial
inverse DFT (IDFT) sensing matrix A based on the receiver’s sampling rates, and applies CS
recovery algorithms to estimate the frequency spectrum X. The SNS-CS cueing receiver’s per-
formance is examined through Monte Carlo simulations and are compared to the performance
achieved when a random sensing matrix is used in the CS recovery algorithm. The performance
of the SNS-CS cueing receiver is shown to be comparable to that of a random sensing CS re-
ceiver architectures in identifying the frequencies of sinusoids in a sparse signal environment
and is consistent with the theoretical predictions of [25]. The SNS-CS cueing receiver is also
demonstrated to allow the identification of an increased number of sinusoids than the Chinese
Remainder Theorem (CRT)-based algorithm described in [29] and the algorithm in [18] for a
fixed number of coprime sampling rates. The results are summarized for three separate SNS-CS
cueing receiver architectures in Table 5 and is compared to that of a CRT-based algorithm in
Table 6.
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Table 5: Number of sinusoids that can be detected with PD ≥ 0.9 with N = 2048, fmax = 128 Hz.

SNR
mi 30 dB 20 dB 10 dB From Equation (4)

{21,22,23} 3 3 2 4

{21,22,23,25} 5 5 3 5

{21,22,23,25,29} 7 7 4 7

Table 6: Comparison of the maximum number of sinusoids that are able to be detected by the SNS-CS
cueing receiver to the performance of the CRT based algorithm of [29].

SNS-CS Cueing Receiver CRT Algorithm of [29]
mi Frequencies fmax Frequencies fmax Frequencies fmax

{21,22,23} 3 128 3 23

{21,22,23,25} 5 128 4 25 2 462

{21,22,23,25,29} 7 128 5 29 2 462

Symmetrical Number System - Folding Receiver (NYFR-B)
A multi-channel NYFR architecture (shown in Figure 5) with uniform coprime sampling (NYFR-
B) is proposed as an alternate architecture to a single channel NYFR architecture using a non-
uniform sampling. The NYFR-B architecture uses uniform sampling based on coprime moduli
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and resolves the signal’s frequency using the properties of the SNS and the folding receiver.
The relationship between the frequency spectrum obtained using an SNS-based undersampling
receiver and that obtained using the NYFR-B architecture is examined. It is demonstrated that
the NYFR-B architecture and the SNS undersampling receiver architecture produce frequency
spectra for each channel where the signal’s energy is concentrated in the identical positive dig-
ital frequency bin k representing the same baseband frequency for both receiver architectures.
This fact allows the use a constant radix FFT for all channels allowing faster computations and
signal processing compared to that of a multi-channel undersampling receiver architecture us-
ing different radix DFTs. An envelope approximation detector (EAD) with greatest of constant
false alarm rate (GO-CFAR) processing [30] is adapted to estimate the magnitude spectrum and
detect the peak values. The use of GO-CFAR processing provides an adaptive detection thresh-
old to compensate for either a colored noise spectra, band limited barrage noise jamming, or
a noise distribution that is not wide sense stationary. The use of the SNS to resolve multiple
frequencies is also examined and the conditions for unambiguous frequency identification are
presented. The receiver’s performance is shown in Figure 6.

Concluding remarks
In this work, wideband EW receiver concepts were examined that couple the use of symmetrical
number systems and wideband technologies such as CS and MW photonics. Also, closed-form
expressions for M̂RSNS were generated for several families of moduli sets for three sequence and
four sequence RSNSs. The new closed-form expressions were verified to satisfy the solutions
to the congruence equations defining the ambiguity locations [21]. Closed-form expressions for
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Figure 6: Four channel NYFR-B: two transmitted tones, (a) probability of detection, (b) probability
of a missed detection. Monte Carlo simulations conducted: 1×105.

four additional moduli families for a three-sequence RSNSs were developed. Also, closed-form
expressions for five different families of moduli sets for four-sequence RSNSs were developed
and presented. These expressions are the only closed-form expressions for M̂RSNS that have been
developed for four-sequence RSNSs. Future work in this area includes identifying additional
specific closed-form expressions for M̂RSNS for different families of moduli sets focused upon
identifying a general closed-form expression for the M̂RSNS for a general set of N coprime
moduli.

A photonic DF array with RSNS preprocessing was also examined. It was demonstrated the-
oretically and verified through simulations and experimentation that a DE-MZM can be used
to perform phase interferometry. Using DE-MZMs, a linear four-element photonic DF antenna
array with RSNS preprocessing was designed and its performance was examined through sim-
ulations and experimental testing. It was demonstrated that the photonic DF array provided
accurate DOA estimation with fine DOA resolution while maintaining a small array size. The
simulations and experimental testing were performed for a narrow band CW signal at 2.4 GHz.
The results successfully demonstrate the concept of a photonic DF array with RSNS prepro-
cessing, which warrants future investigation and development for use in EW receiver systems.
Future work to further develop and mature this concept include anechoic chamber testing using
narrow band components, modification of the circuit to use wideband components followed by
bench testing and anechoic chamber testing. Experimental testing with multiple pulsed emit-
ters is also required. Also, integration of the photonic DF array with RSNS preprocessing with
a wide band CS receiver such as the NYFR and further development of pulse sorting signal
processing algorithms provide additional avenues for future research.

The use of the SNS was examined in CS receivers to take advantage of the relationship between
the SNS and the DFT [18]. A SNS-CS cueing receiver was investigated. The performance of
the SNS-CS cueing receiver was examined through Monte Carlo simulations, and the results
were compared to those obtained when a random orthonormal sensing matrix was used. The
results demonstrated that the SNS-CS cueing receiver was capable of accurately resolving the
number of frequencies predicted by CS theory and was comparable to that of random sensing
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techniques. Future work includes determining the SNS-CS cueing receiver’s performance when
using greedy recovery algorithms and hardware implementation.

A multi-channel NYFR architecture using deterministic coprime sampling based on the moduli
of a SNS was examined. The use of a NYFR architecture enabled use of a common radix FFT
to calculate the residues in each channel instead of different radix DFTs in each channel. The
constant sampling rates in also allowed for a simpler implementation of the sampling process
when compared to the conventional NYFR architecture that uses a modulated RF sampling
clock. Due to the possibility that permutations of the residues could represent more than one
valid SNS code, the full dynamic range of the SNS could not be exercised and a smaller dynamic
range was used based on applying the results from [29] to the SNS. Monte Carlo simulations
were conducted and performance curves were presented for a four-channel and six-channel
NYFR-B receiver architecture. Future research in this area includes examining methods that
can be employed to allow taking advantage of the entire bandwidth provided by the M̂SNS of all
moduli used. By doing so, the number of channels required to identify multiple signals can be
reduced significantly. One potential method is to apply a modulation to one of the channels of
the NYFR to isolate the Nyquist zone in which each sinusoid resides to allow resolution of each
signal’s frequency and eliminate permutations of the symmetrical residues that correspond to
frequencies outside of the identified Nyquist zone. Simulations and hardware testing can also
be accomplished to further develop this CS receiver concept.
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CHAPTER 1:

Introduction

Military search and fire control radars cover a wide bandwidth (BW) of frequencies (2-18 GHz)
and have expanded into the millimeter wavelength range as missile seekers employ imaging
radars to discriminate between targets and decoys during terminal homing. Electronic war-
fare (EW) receivers intercept threat emitters and determine their parameters, including fre-
quency, pulse width (PW), pulse repetition frequency (PRF), PRF jitter or modulation, and
direction-of-arrival (DOA). Based on these parameters, EW receivers classify intercepted sig-
nals by comparing their parameters to a database or emitter library [1]. Passive detection and
classification of threat radars through electronic support (ES) allow modern integrated combat
systems to respond with electronic attack (EA), by deploying decoys and by conducting active
radar jamming, or employing air defense (AD) weapon systems. These weapon systems include
the Standard Missile, the Evolved Sea Sparrow Missile, the Rolling Airframe Missile, and the
Phalanx Close-in Weapon System, shown in Figure 1.1.

As threat weapon systems migrate to the millimeter wavelength band and adopt low-probability-
of-intercept techniques, EW receivers must be capable of monitoring wider BWs to inter-
cept emerging threat emitters. Most wideband receivers channelize the received signal and
then down-convert the signal in each channel to an intermediate frequency prior to conduct-
ing analog-to-digital conversion. This approach is costly in terms of analog hardware, space
limitations, and power consumption. Therefore, trends in receiver design have been toward
digitizing the analog signal as far forward in the receiver as possible to eliminate analog down-
conversion stages and filters. This technique reduces inter-modulation products and increases
the EW receiver’s dynamic range. If direct digitization at the antenna is achieved, digital signal
processing (DSP) can be used to conduct demodulation, filtering, etc., which takes advantage
of the advances in digital microprocessor speeds. However, to digitize an analog signal without
aliasing, the sampling rate must be greater than or equal to the Nyquist sampling rate [3].
Analog-to-digital converter (ADC) technology, has lagged behind the advances in digital mi-
croprocessor technology hindering the ability to directly digitize received radio frequency (RF)
and microwave (MW) signals [4]–[7].

To address the limitations of ADC technology, several undersampling techniques based on co-
prime sampling rates and symmetrical number systems have been introduced. Symmetrical
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number systems based on coprime moduli sets were developed to extract the maximum amount
of information from symmetrical folding waveforms that are common in many engineering and
scientific applications [8]. The use of symmetrical number systems has also been proposed
to resolve frequency ambiguities due to aliasing in undersampled receivers and to increase the
resolution of high speed ADCs. Compressive sensing (CS), has also emerged that combines
several disciplines in mathematics and engineering to allow signal recovery while sampling at
rates much less than the Nyquist sampling rate provided the signal is sparse in an orthonormal
basis. Several CS receiver architectures have been proposed in the literature for use in numerous
applications including EW receivers.

Photonic technology has also been introduced to modern radars and EW receivers due to the

(a) Standard Missile. (b) Evolved Sea Sparrow.

(c) Phalanx Close-in Weapon System. (d) Rolling Airframe Missile.

Figure 1.1: Air defense weapons from [2].
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advantages of fiber-optic systems over metallic waveguides or coaxial cables including wide
BWs, low electrical losses, low weight, and the immunity to electromagnetic interference (EMI)
[9]. Microwave photonic systems also permit the use of narrow band optical signal processing
techniques due to the high frequency of the optical carrier, fopt ≈ 193 THz for a 1550 nm
wavelength laser, compared to the bandwidth of a wideband MW signal, i.e several GHz. The
most common electro-optic modulator used in MW photonic systems is the Mach-Zehnder
modulator (MZM) based on LiNbO3 technology. Possessing an extremely wide BW, MZMs
are ideally suited for use in wideband EW receiver applications.

In this work, several wideband EW receiver concepts are developed that combine the use of
symmetrical number systems and advanced technologies such as photonics and CS theory. The
first concept investigates a four-element photonic direction finding (DF) array with robust sym-
metrical number system (RSNS) preprocessing. This concept is first developed theoretically
and then verified through simulation and experimental testing. Closed-form analytical expres-
sions for the dynamic range of the RSNS M̂RSNS are also developed for several families of
coprime moduli sets through the application of a computationally efficient search algorithm.
Two EW receiver concepts are also examined which use the symmetrical number system (SNS)
in CS receiver architectures. The first of these two concepts applies CS theory and recovery
algorithms to a multi-channel undersampling receiver based on the SNS in a cueing receiver
application. The SNS is also applied to a multi-channel Nyquist analog-to-information fold-
ing receiver (NYFR) architecture allowing determination of the SNS residues via a fast Fourier
transform (FFT) and resolving frequency ambiguities through the properties of the SNS and the
NYFR. Through examination of these concepts several contributions are made.

1.1 Primary Contributions
The first major contribution in this work is the development of several new closed-form analyt-
ical expressions for M̂RSNS for various families of coprime moduli sets. The closed-form ex-
pressions are developed by curve fitting data produced using a computationally efficient search
algorithm. The computational complexity of the efficient search algorithm is compared to that
of a naïve search algorithm and is demonstrated to be less complex by several orders of mag-
nitude. These closed-form expressions are also demonstrated to satisfy the solutions to con-
gruence equations that apply to the ambiguity locations. As a result of these new analytical
expressions, the dynamic range of a greatly increased number of moduli sets can be easily cal-
culated without the use of computer search algorithms. Additional closed-form expressions are
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developed for both three sequence and four sequence RSNSs. The method used to determine
and validate the new closed-form expressions for M̂RSNS is also presented allowing follow-on
research in this area.

The second major contribution contained in this manuscript is that the dual electrode Mach-
Zehnder modulator (DE-MZM) is proven mathematically to be capable of being used in phase
interferometry applications. The theoretical results are also demonstrated through simulation
and experimentation. Building upon this result, a small baseline four-element photonic DF
array with RSNS preprocessing is designed, and its performance is investigated through the use
of computer simulations and experimental testing, which proves the viability of the concept.
The impact of signal frequency on system performance is also examined demonstrating the
decreased spatial resolution that results when the signal frequency is below the design frequency
of the photonic DF array. The photonic DF array’s performance, when more than one pulsed
emitter is present, is also examined through computer simulations. The simulation results for
three separate cases are presented, and the signal processing algorithm used to sort the pulses is
discussed.

The third major contribution is that a SNS-based CS cueing receiver is presented. The symmet-
rical number system - compressive sensing (SNS-CS) cueing receiver applies CS theory to an
undersampled receiver using SNS-based sampling rates. The SNS is placed in a CS framework
by collating the time domain samples from each channel to form the measurement vector, and
deterministically forming the sensing matrix by selecting the rows of a unitary inverse discrete
Fourier transform (IDFT) matrix that correspond to the SNS-based sample times. The fre-
quency spectrum of the signal is estimated by applying a CS recovery algorithm, sparse recon-
struction by separable approximation (SpaRSA) [10]. The results of Monte Carlo simulations
are presented for different SNS-CS cueing receiver architectures. The probability of correctly
identifying the frequency components of the signal is determined and compared to that of a CS
receiver architecture using a random sensing matrix. The performance of the SNS-CS cueing
receiver is also compared to the theoretical predictions for Fourier-based sensing matrices. It
is shown that the SNS-CS cueing receiver’s performance is comparable to the performance of
CS receivers using random sensing matrices as well as the theoretical predictions. The SNS-CS
cueing receiver also provides significant improvement over the performance of other undersam-
pled receivers based on coprime sample rates that use Chinese remainder theorem (CRT)-based
recovery algorithms.
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The fourth major contribution is demonstrating the use of SNS-based undersampling in a NYFR
architecture using an envelope approximation detector (EAD) with greatest of constant false
alarm rate (GO-CFAR) processing to identify the peaks in the magnitude spectrum. The SNS
structure is shown to be maintained by the NYFR architecture allowing use of the FFT for sig-
nal processing as opposed to different length discrete Fourier transforms (DFTs). The necessary
modifications to the conditions required to implement an EAD with GO-CFAR processing to
detect the peaks in the frequency spectrum are presented. Probability of detection curves are de-
termined through Monte Carlo simulations to demonstrate the ability of a undersampled folding
receiver to intercept multiple signals in a sparse signal environment. The required restrictions
on the bandwidth of the receiver are also presented that prevent ambiguities in the resolved
frequencies due to the permutations of the symmetrical residues.

1.2 Dissertation Outline
The remainder of this document is structured as follows. Background material is provided
in Chapter 2 and Chapter 3. In Chapter 2, the important theoretical concepts in CS theory
are presented, and a comprehensive review of the CS receiver architectures proposed in the
literature is presented. In Chapter 3, three different symmetrical number systems are presented
to provide the reader with a basic understanding of the structure of the symmetrical number
systems and their applications. The SNS, optimum symmetrical number system (OSNS), and
RSNS are presented showing the structure of the number systems and the analytical expressions
for the dynamic range that exist. Specific properties of each symmetrical number system are
discussed and applications are presented.

In Chapter 4, a computationally efficient search algorithm is presented for determining M̂RSNS,
and its computational complexity is compared to that of a naïve search algorithm. The efficient
search algorithm is used to generate data sets for different families of coprime moduli from
which closed-form analytical expressions are developed via curve fitting techniques. The new
closed-form expressions for M̂RSNS are subsequently verified to satisfy the solution to the con-
gruence equations that define the ambiguity locations. Additional closed-form expressions are
developed for different families of three coprime moduli. Also, several closed-form expressions
are developed for families of four coprime moduli, where none have previously been identified.
The methodology for determining the closed-form expressions for M̂RSNS is presented, and its
application to additional moduli sets is discussed.

In Chapter 5, it is first proven, then demonstrated via simulations and experimental testing that
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a DE-MZM can be used in phase interferometry applications to determine the DOA of an RF
emitter. This concept is then applied to design, simulate and experimentally test a four-element
photonic DF array with RSNS preprocessing based on moduli mi = {7,8,9}. It is demonstrated
through simulations that the system’s performance closely correlates with the theoretical predic-
tions. Experimental testing also closely approximated the theoretical predictions. Simulations
are also presented to demonstrate the DOA processing of two or more intercepted pulsed emit-
ters.

In Chapter 6, CS theory is applied to an undersampling receiver based on the SNS. The SNS-CS
cueing receiver concept is developed in Section 6.1, and the performance of the SNS-CS cueing
receiver is examined through Monte Carlo simulations in Section 6.2. The performance of the
SNS-CS cueing receiver is compared to that of a CS receiver employing a random sensing ma-
trix simulating a general random sampling approach. The SNS-CS receiver’s ability to resolve
multiple frequency tones is also compared to that of undersampled receivers using coprime
sampling rates and a CRT based algorithm to resolve ambiguities resulting from aliasing.

In Chapter 7, the use of constant SNS-based undersampling in a multi-channel NYFR architec-
ture is presented. It is proven that the SNS structure is maintained by the NYFR architecture
allowing the use of an FFT instead of a DFT to determine the residue values increasing the
computation speed. The peaks in the magnitude spectrum formed through use of an EAD with
GO-CFAR processing is used to provide a variable threshold based on a constant false alarm
rate (CFAR). Through the properties of the folding receiver, the frequency values are calculated
based upon the residues in each channel. The results of Monte Carlo simulations are presented
for a four channel and six channel receiver. Concluding remarks follow in Chapter 8.
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CHAPTER 2:

Compressive Sensing

Compressive sensing is a recent development in DSP that combines sampling and compression
into a single operation allowing the recovery of sparse high-dimensional signals from incom-
plete measurements by using efficient algorithms [11]. The primary impetus for the adoption of
CS is that ADC speeds have lagged the increases in microprocessor speeds [4]–[7], limiting the
ability to directly digitize wideband signals. Compressive sensing has found numerous appli-
cations in imaging [12], [13], medical imaging [14], [15], remote sensing [16], [17], analog-to-
information conversion [18], [19], communications [20], [21], and radar [22], [23] by drawing
from a variety of other fields including convex optimization, numerical linear algebra, random
matrix theory, and signal processing [11]. An introduction to CS theory and a comprehensive
summary of the CS receiver architectures that have been proposed in the literature are provided
in this chapter.

2.1 Compressive Sensing Theory
Compressive sensing theory permits the recovery of sparse signals and images using signifi-
cantly fewer samples than required by the Nyquist sampling theorem [24]. An N × 1 signal
vector z can be expressed as a linear combination of the columns of an N×N orthonormal basis
matrix Ψ as

z =
N

∑
i=1

xiψi = Ψx, (2.1)

where x is a N×1 vector of weighting coefficients. The weighting coefficients are

xi = 〈z,ψi〉= ψi
T z′ (2.2)

where 〈•〉 is the inner product and ψ i is the i-th column vector of Ψ. The signal z is considered
to be S−sparse in Ψ if all but S of the N weighting factors xi are equal to zero and S� N.
Similarly, a signal is considered to be compressible if all but S of the N weighting factors are
negligible in value compared to the S largest valued weighting factors and S� N [25]. For
example, a sinusoidal tone is sparse in a Fourier basis. Equation (2.1) is displayed pictorially in
Figure 2.1 where the shaded blocks indicate that xi 6= 0 and the unshaded blocks indicate that
xi = 0.
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Figure 2.1: Pictorial depiction of sparsity.

In conventional transform coding, signals are sampled at or above the Nyquist sampling rate
and are then transformed to a compressible or sparse representation (for example via eigenvalue
decomposition). The compressed data is then used to represent the signal. This sample-then-
compress framework suffers from three inherent inefficiencies: the initial number of samples
N may be large even if the desired S is small; the set of all N transform coefficients xi must be
computed even though (N−S) of them will be discarded, and the locations of the S largest co-
efficients must be encoded introducing additional overhead [25]. Compressive sensing resolves
these inefficiencies by combining the separate sampling and compressing operations into a sin-
gle function. Compressive sensing encodes (sample/compress) an S-sparse signal z by taking
L measurements to form an L×1 measurement vector y where S < L� N. The measurement
vector y is expressed as

y = Ax, (2.3)

where the L×N sensing matrix A is the product of an L×N fixed measurement basis matrix Φ
and an N×N orthonormal basis matrix Ψ [24],

A = ΦΨ. (2.4)

Equation (2.3) is represented pictorially in Figure 2.2.

The CS problem, therefore, consists of determining a stable measurement basis Φ that retains
the salient information in the S−sparse or compressible signal while reducing the dimensional-
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Figure 2.2: Pictorial representation of the combined sampling and compressing steps.

ity from z ∈ RN to y ∈ RL, and determining a reconstruction algorithm that allows recovery of
z from only L u S (u is approximately equal to) measurements that form y. For the problem
posed in Equation (2.3) to have a stable solution, i.e., a solution that does not change apprecia-
bly due to small perturbations from additive noise, the Euclidean distance ( `2 norm) between
the vectors in RN space and RL space must be preserved. The `p norm is defined as

‖x‖p =





p

√
N

∑
1
|xk|p, p ∈ [1,∞)

max
i=1,2,...,N

|xi|, p = ∞
. (2.5)

In the literature, reference is also made to an `0 pseudo-norm,

‖x‖0 = lim
p→0
‖x‖p = |supp(x)| , (2.6)

where the absolute value of the support of x, |supp(x)|, is the cardinality of supp(x) [11]. More
simply stated, ‖x‖0 is the number of elements in x where xi 6= 0.

Sensing matrices that satisfy restricted isometry property (RIP) of order S approximately pre-
serve the Euclidean distance of S-sparse signals between the vectors in RN space and RL space
and have columns that are nearly orthogonal [24], [25]. Therefore, if a sensing matrix satisfies
RIP of order S, an efficient and robust reconstruction algorithm exists that allows for recon-
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struction of an S-sparse signal x from y [24]. The RIP is defined as

(1−δS)‖x‖2
`2
≤ ‖Ax‖2

`2
≤ (1+δS)‖x‖2

`2
(2.7)

where δS ∈ (0,1) is the isometry constant of A and is the smallest value for which Equation (2.7)
is satisfied [24]. Sensing matrices that satisfy RIP of order S also satisfy RIP of order S̃ < S. If
A satisfies RIP, Φ and Ψ must have low coherence where coherence is defined as

µ(Φ,Ψ) =
√

N max
1≤k, j≤N

∣∣〈φk,ψ j
〉∣∣ (2.8)

and measures the largest absolute inner product between any two columns of Φ and Ψ [11],
[24]. The coherence µ and RIP are related. If A has unit length column vectors, A satisfies RIP
of order S provided

δS = (S−1)µ (A) , (2.9)

for all S < 1/µ [11]. Gaussian or Bernoulli distributed random matrices are typically used as
Φ because they are known to be incoherent with any fixed Ψ, and therefore, produce sensing
matrices satisfying the RIP [11], [24], [25].

To recover z or equivalently the weighting factors x from y, the recovery algorithm must solve
Equation (2.3). However, there are an infinite number of possible solutions x̂ because any vector,
x+ r where r ∈ N(A) (N(A) is the Null Space of the matrix A) solves Equation (2.3). There-
fore, the signal reconstruction algorithm must determine the sparsest solution. Reconstruction
algorithms typically rely on convex optimization algorithms that minimize a `p norm. Of the
possible reconstruction algorithms, typically, minimization of the `2 norm fails to provide a
sparse result. Also, minimizing the `0 pseudo-norm is numerically unstable and NP-complete
requiring an exhaustive enumeration of all

(
N
S

)
=

N!
S!(N−S)!

(2.10)

possible solutions to determine the sparsest solution x̂ [25]. In complexity theory, an NP-
complete class of problems have the property that if any of the problems can be solved by a
polynomial worst-case time algorithm, then all of the problems can be solved by polynomial
worst-case time algorithms [26].

Optimizing based on the `1 norm, however, allows exact recovery of the S−sparse signal from
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the L measurements. The `1 minimizer is determined as

x̂ = argmin
∥∥x′
∥∥

1 such that Ax′ = y (2.11)

and can exactly recover z by using

L≥CS ln(N/S) (2.12)

independent identically distributed (IID) Gaussian measurements where C is a constant de-
pending on each instance [24], [25], [27]. As an example, if A satisfies RIP of order 2S and
δ2S ∈ (0,1/2], C = 1/

(
2ln
(√

24+1
))
≈ 0.28 [11].

Examining the geometry of the CS problem in RN helps to visualize why the `2 norm fails to
identify the sparse solution and why `1 minimization succeeds. The set of all S−sparse vectors
x ∈ RN is a highly nonlinear space consisting of all S-dimensional hyperplanes that are aligned
with the coordinate axes as shown in Figure 2.3a. The translated null space H = N(A)+x is
oriented at a random angle due to the randomness in the matrix A as shown in Figure 2.3b. The
`2 minimizer,

x̂ = argmin
∥∥x′
∥∥

2 such that Ax′ = y (2.13)

is the point on H closest to the origin. This point can be found by blowing up a hypersphere
(the `2 ball) until it contacts H . Due to the random orientation of H , the estimate x̂ will be
away from the coordinate axes with high probability and, therefore, will be neither sparse nor
accurate. In contrast, the `1 ball shown in Figure 2.3c is convex and has its vertices aligned with
the coordinate axes. Therefore, when the `1 ball is blown up, it will first contact the translated
null space H at a point near the coordinate axes, which is precisely where the sparse vector, x,
is located [25]. This can also be seen in two dimensions in Figure 2.3d.

To accurately recover a sparse signal using CS, a sufficient number of samples must be obtained.
Different conditions have been placed on the required number of samples based on the distribu-
tion of the measurement basis Φ. If L samples of an S-sparse signal z are chosen uniformly at
random, z may be recovered exactly with overwhelming probability using `1 minimization if

L≥Cµ2 (Φ,Ψ)S lnN (2.14)

where C is positive constant. Also, for a Φ based on a Gaussian or a symmetrical Bernoulli
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Figure 2.3: Geometric representation of `p norm minimization. (a) The subspaces containing two

sparse vectors in R3 lie close to the coordinate axes. (b) Visualization of the `2 minimization that �nds
the nonsparse point-of-contact, x̂ between the `2 hypersphere and the translated measurement matrix
null space. (c) Visualization of the `1 minimization solution that �nds the sparse point-of-contact x
with high probability due to the pointedness of the `1 ball. (d) displays the `1 ball and `2 ball in two
dimensions. After [25].

distribution, the number of samples acquired must satisfy Equation (2.12).

In a signal environment corrupted by additive white Gaussian noise (AWGN), the `1 mini-
mization problem described by Equation (2.11) is recast as an `1 minimization with relaxed
constraints for reconstruction. This algorithm is commonly referred to as the least absolute
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shrinkage and selection operator (LASSO) algorithm and is formulated as

min‖x‖`1
subject to ‖Ax−y‖`2

< ε (2.15)

where ε bounds the amount of noise in the data [10], [24], [28]. The `1 minimization prob-
lems of Equation (2.11) and Equation (2.15) can be solved via convex optimization such as
basis pursuit (BP) that applies algorithms such as interior-points methods for linear program-
ming [27], [29], [30] or block coordinate relaxation (BCR) [30]. Besides convex optimization
there are several greedy algorithms that have been developed to solve the `1 minimization prob-
lem described by Equation (2.11) as well as the noise corrupted problem of Equation (2.15).
Greedy algorithms rely on iterative approximation of the signal coefficients and support either
by iteratively identifying the support of the signal until a convergence criterion is met, or alter-
natively by obtaining an improved estimate of the sparse signal at each iteration that attempts
to account for the mismatch to the measured data [11]. These algorithms include matching pur-
suit (MP) [11], [31], orthogonal matching pursuit (OMP) [31], [32], gradient pursuit (GP) [33],
and compressive sampling matching pursuit (CoSaMP) [34].

While the use of random sensing matrices and `1 minimization is a near-optimal sensing strat-
egy [24], random sensing matrices have some drawbacks. These drawbacks include: (1) the
efficiency of sampling is offset by increased complexity in the reconstruction algorithm, (2)
significant storage requirements can exist, and (3) no efficient algorithm exists for verifying
that A satisfies RIP [35]. Deterministic sensing matrices address these drawbacks by allowing
dynamic construction of the sensing matrix eliminating the need for storage. Also, deterministic
sensing matrices permit signal recovery using lower complexity algorithms and provide easily
verifiable conditions to ensure successful signal recover for all but an infinitesimally small frac-
tion of S-sparse signals [35]. The performance of deterministic sensing matrices, however, is
only guaranteed in expectation. In [35], instead of considering whether the sensing matrix sat-
isfies RIP a weaker condition, statistical restricted isometry property (StRIP), is imposed. A
sensing matrix A is defined as a (S,δ ,ε)-StRIP matrix if

(1−δ )‖x‖2
2 ≤

∣∣∣∣
1√
N

Ax
∣∣∣∣
2

≤ (1+δ )‖x‖2
2 (2.16)

with probability 1− ε with respect to a uniform distribution of the vectors x among all S-
sparse vectors in RN with the same fixed magnitudes. A large class of deterministic sensing
matrices were examined in [35] including those based on partial DFT or IDFT matrices. It was
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Table 2.1: Analytical expressions for the required number of samples for the sensing matrix to satisfy
the restricted isometry property based on the measurement matrix distribution.

Measurement Matrix Distribution Required Number of Samples

Uniform L≥Cµ2 (Φ,Ψ)S lnN

Gaussian or Bernoulli L≥CS ln(N
S )

Fourier (rows chosen uniformly at random) L> S lnN

demonstrated that partial DFT or IDFT sensing matrices satisfy StRIP, provided

L> Sln(N), (2.17)

and the rows of the matrix are chosen uniformly at random [35]. Deterministic partial DFT
sensing matrices, formed by selecting the rows of the DFT matrix that correspond to the inte-
ger outputs of certain polynomial functions modulo N, were also shown to satisfy RIP in [36].
Equation (2.17) is applied in Chapter 6 to determine the theoretical maximum number of tones
that the receiver can detect. A summary of the required number of samples based on the mea-
surement matrix distribution is provided in Table 2.1.

While the focus above has been on discrete-time signals z, CS also applies to sparse or com-
pressible analog signals z(t) that can be represented or approximated using only S of N possible
elements from a continuous basis or dictionary ψi(t)

N
i=1. While each ψi(t) may have large

bandwidth, the signal z(t) has only S degrees of freedom and thus can be measured at a much
lower rate than the Nyquist sampling rate [25]. Thus, if a sparse signal can be represented by
a structured signal models or union of subspaces, the signal can be recovered using less sam-
ples than required by Equation (2.12) [37], [38]. Examples of structured signal sparsity models
that can be incorporated into CS recovery algorithms include wavelet trees and block sparsity
models [37].

2.2 Compressive Sensing Electronic Warfare Receivers
Several CS receiver architectures have been proposed in the literature. The majority of CS
receiver architectures introduce randomness into the sampling process to generate sensing ma-
trices that have a high probability of satisfying RIP. Examples of CS receiver architectures that
introduce randomness into the sampling process are the random filter [39], random demodula-
tor (RD) [40], and the compressive multiplexer (CMUX) [41]. Other CS architectures, such as
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the NYFR [18], [42], [43] and those using nonlinear affine processing (NoLAff) [44], preserve
the signal’s structure and allow determination of signal characteristics (frequency, BW, PRF,
PW, modulation type, etc.) via less complex algorithms.

2.2.1 Random Demodulator
A RD, shown in Figure 2.4, is a new type of sampling system that can be used to acquire
sparse, band limited signals. One of the major advantages of the RD is that it bypasses the
need for a high-rate ADC and allows sampling at a much lower frequency than required by the
Nyquist sampling theorem. The RD consists of a pseudo-random number generator that gener-
ates a chipping sequence, pc(t), a mixer, an accumulator, and a sampler. The RD demodulates
the incoming signal z(t) by multiplying it with a pseudo-random chipping sequence pc(t) that
switches between±1 at or above the Nyquist sampling rate of N samples per second (sps) [40].
This operation spreads the input signal frequency spectrum through the convolution of the signal
and the chipping sequence frequency spectra Z( f ) ∗Pc ( f ) where f represents frequency. The
resulting signal is then passed through an integrate and dump circuit prior to being converted to
a digital signal at a sampling rate of L sps, where L� N. [40].

To better illustrate the functioning of the RD, it can be recast in a discrete time format problem
where the signal z(t) is a multi-tonal continuous signal sparse in the frequency domain and is
represented by a Nyquist rate sampled signal z. From Equation (2.1), z = Ψx where Ψ is a

Pseudo-random Number 
Generator 

( )z t

( )cp t

1
−

∫
t

t
L

( )y n

=
nt
L

( ) ( )cz t p t

Figure 2.4: Random demodulator block diagram. After [40].
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unitary DFT matrix,

Ψ =
1√
N

[
e
− j2πnk

N

]
n,k
, (2.18)

where n = 0,1, . . . ,N− 1 and k = 0,±1,±2, . . . ,±(N/2−1) ,N/2. The RD can be expressed
as a discrete time representation in matrix form as

y = ΦΨx. (2.19)

The action of the demodulator on the discrete signal can be expressed as

Φ = HD (2.20)

where each row of Φ yields a separate sample of the input signal. The matrix, H, is an L×N

matrix with N/L consecutive unit entries (h= 1) starting in column lN/L+1 for l = 0,1, . . . ,L−
1,

H =




hN/L−1 · · · h0 0 · · · · · · · · · · · · · · · 0 0

0 · · · 0 hN/L−1 · · · h0 0 · · · ... 0 0
... . . . . . . 0 · · · hN/L−1 · · · h0 0 0
0 · · · · · · · · · · · · · · · 0 · · · 0 hN/L−1 · · ·



, (2.21)

and represents the action of the integrate and dump circuit. The matrix, D, is a N×N matrix with
elements equal to the value of the chipping sequence and represents the action mixer multiplying
the input signal by the chipping sequence, εi =±1,

D =




ε0 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0 εN−1



. (2.22)

The RD can now be expressed as
y = HDΨx (2.23)

where y is the vector of samples acquired by the RD that represent z. Recovery of the sig-
nal is accomplished through algorithms such as `1 norm minimization or greedy pursuit algo-
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rithms [40].

Empirical results provided in [40] demonstrate that the RD requires a sampling rate of

L≈ 1.7S ln
(

N
S
+1
)
. (2.24)

In [40], theoretical guarantees are also provided for recovery of a sparse signal composed of S

randomly selected uniformly spaced tones by `1 minimization when

L≥C
(
S lnN + ln3 N

)
(2.25)

and L divides N.

In [45], a constrained random demodulator (CRD) is presented that is a modification of the
RD. The CRD replaces the random waveform pc (t) with a constrained random waveform that
limits its switching rate because fast switching waveforms may be difficult to generate cleanly.
The CRD replaces the modulating waveform of the RD with a (d,k)-constrained waveform
generated from a run-length limited (RLL) sequence. The RLL constraints specify the minimum
separation d and the maximum separation k between transitions from one symbol to another
to reduce the number of transitions in the waveform by a factor of (d + 1), resulting in an
increase in the signal energy captured by the hardware. The performance of the CRD using
RLL sequences based on repetition coded sequences and Markov chains are examined in [45]
and compared to that of the RD. Poor performance was seen when using the repetition coded
sequences. However, the performance of the CRD when using the Markov-based RLL was
comparable to the performance of the RD [45].

2.2.2 Random Filter
A random filter, shown in Figure 2.5, is new technique for efficiently acquiring and reconstruct-
ing signals based on convolution with a fixed finite impulse response (FIR) filter of length B

where the filter taps are IID random variables [39]. The filter tap distributions examined in [39]
are a zero mean Gaussian distribution with a variance of one N (0,1) and a Bernoulli/Rademacher
distribution {±1}’s. The signal is encoded by performing linear convolution and down sampling
by a rate of N/L where N is the length of the sparse signal vector x, and L is the number samples
in the vector y used to represent x. This operation can be represented as

y = D↓(h∗ x) (2.26)
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Figure 2.5: Random �lter implementations. (a) is a block diagram of a time domain implementation
using convolution. (b) is a FFT based implementation. After [39].

where D↓ down samples by a factor of bN/Lc. The combined operation of linear convolution
and down sampling is displayed in Figure 2.5a and is represented mathematically as

y(n) =
B−1

∑
j=0

x
(

n
⌊

N
L

⌋
+ j
)

h(B− j) (2.27)

where n = 0,1, . . . ,L− 1 and b•c is the floor operator that rounds the argument down to the
nearest integer. This method is useful when the input signal is streaming since the input signal
is localized in time and the system is linear time invariant (LTI). Alternately, the convolution
may be accomplished using the FFT as shown in Figure 2.5b. This method can be expressed
mathematically as:

y = D↓F−1 {H(ω)X(ω)} (2.28)

where D↓ represents down sampling by a factor of bN/Lc and F−1 is the inverse fast Fourier
transform (IFFT) operator. Greedy algorithms, such as OMP, or convex optimization based
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algorithms, such as `1 minimization, are used to reconstruct the signal.

The principal advantage of the random filter receiver architecture is that the random filter re-
quires less storage for measurement and reconstruction than standard CS techniques. Also, due
to the random filter being time invariant and time localized, it is well suited for application with
streaming or continuous time inputs [39].

2.2.3 Random Sampling
A random sampling analog-to-digital converter (RADC), shown in Figure 2.6, is implemented
by randomly sampling the incoming signal at an average rate that is significantly lower than
the Nyquist sampling rate. The samples are chosen using a pseudo-random chipping sequence
pc(t) based on an arithmetic progression designed to have a low probability of samples being
chosen consecutively, i.e., at the Nyquist rate.

The random sampler is the challenging portion of the architecture to implement due to the
potential to have some samples close to each other, i.e., at the Nyquist sampling rate. Two
implementations of the RADC are shown in Figure 2.7. In the first implementation, illustrated
in Figure 2.7a, a parallel bank of low-rate ADCs that have equal shifts between their starting
conversion points is used. This creates a shift in the samples that are produced from each of the
parallel ADCs. The switching mechanism is controlled pseudorandomly. This approach faces
challenges with minimizing the jitter effect when controlling the switches.

A second approach, shown in Figure 2.7b, employs an analog register and an analog demulti-
plexer/multiplexer. The demultiplexer is controlled by a pseudorandom digital control signal
with an average rate corresponding to the measurement rate while the output multiplexer is

RADC 
(Random 
Sampling) 

DSP  
for 

Reconstruction 
( )z t ( )y n

RF ends + 
Communication 
Channel Pseudo-random Number 

Generator 

( )z t

Figure 2.6: Random sampling architecture. After [46].
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Figure 2.7: Random ADC implementations. (a) random ADC implementation using a parallel bank
of ADCs, (b) random ADC implementation using a analog register and a demultiplexer/multiplexer.
After [46].

controlled by a periodic signal with the same rate. The storage control signal is pseudoran-
dom in order to sample the signal at pseudorandom time instances. Recovery of the signal is
accomplished through greedy pursuit algorithms [46].

The principal advantage of the RADC is that it allows for signal acquisition of locally Fourier
sparse signals while sampling at rates significantly less than the Nyquist sampling rate. The
implementation of the random sampling, however, is challenging due to the possibility that
consecutive random samples can be located closely spaced in time and near the Nyquist rate.
Also, the pseudorandom number generator clock in the second implementation is required to
be at or above the Nyquist sampling rate to allow capturing samples that are closely spaced in
time [46].
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2.2.4 Compressive Multiplexer
A CMUX, shown in Figure 2.8, is a CS receiver architecture for sub-Nyquist acquisition of
multiple channels that are not contiguous. The CMUX acquires J independent signal channels
of equal bandwidth W/2 Hz and mixes the channels with orthogonal pseudo-random chipping
sequences p j(t). It then combines the resulting signals into a single channel by adding across
channels prior to sampling at the chipping rate which is greater than or equal to the Nyquist sam-
pling rate of any one baseband signal. The CMUX is analogous to coded digital communication
schemes such as code division multiple access (CDMA); however, rather than coding signals
with orthogonal codes and transmitting the signals onto a common channel as in CDMA, the
CMUX codes the channels and records them onto the same samples [41]. The principal advan-
tages of the CMUX architecture are that it requires only a single ADC and all of its components
operate below the Nyquist sampling rate of the total acquired BW.

The CMUX architecture can be expressed as a W × JW matrix, Φ, formed by concatenating
diagonal W ×W sub-matrices, Φ j, whose diagonal elements are ±1 Rademacher variables and
j = 1, . . .J. That is

Φ = [Φ1,Φ2, . . . ,ΦJ] , (2.29)

RF Tuner 

RF Tuner 



ADC/
DSP 

PN Code 
 ( )jp t

PN Code 
 
1( )p t

Information 

Figure 2.8: Compressive multiplexer block diagram. After [41].
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where

Φ j =




ε0 0
. . .

0 εW


 (2.30)

and εw =±1.

The sparsity basis matrix Ψ is a JW × JW block diagonal matrix with a W ×W unitary DFT
basis F along the diagonal,

Ψ =




F1 0
. . .

0 FJ


 . (2.31)

The goal is to recover an S-sparse vector, x ∈ RJW , such that y = Ax, where A = ΦΨ. Signal
recovery can be accomplished by demodulating the signal with each chipping sequence or via
the BCR algorithm [41].

In [47], the recovery of correlated signals is examined. The CMUX architecture is modified by
placing a random LTI filter after the random modulation in each leg of the CMUX architecture.
The addition of the LTI filters forces the signal energy to be equally distributed among the
channels allowing recovery of an ensemble of correlated signals regardless of the initial energy
distribution [47].

2.2.5 Modulated Wideband Converter
A modulated wideband converter (MWC) is an analog wideband CS receiver that exploits
spread spectrum communication techniques to allow sampling sparse wideband signals at rates
much less than the Nyquist sampling rate [19], [48]. A block diagram of the MWC is displayed
in Figure 2.9. The MWC front-end pre-processes a multi-band analog signal, z(t), by using L

channels. The term multi-band refers to an analog signal with the frequency spectrum concen-
trated on N frequency bands with individual BWs no greater than B Hz [19]. In each channel,
z(t) is mixed with a periodic signal pi(t), where i = 1,2, . . . ,L, with period, Tp = 1/ fp. In each
channel, the resulting signal z̃i(t) is low pass filtered by filter h(t) with a cutoff frequency of
fs/2 and uniformly sampled at a rate of fs Hz.

The mixing operation scrambles the frequency spectrum of z(t) so that a portion of the signal’s
energy in all of the bands appears in base band. Since the mixing signals are periodic, the signal
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can be expressed as a Fourier series expansion,

pi(t) =
∞

∑
l=−∞

cile
j2πlt
Tp . (2.32)

Therefore, the mixing results in a weighted sum of fp-shifted copies of the signal’s frequency
spectrum,

Z̃( f ) =
∞

∑
l=−∞

cilZ ( f − l fp), (2.33)

where

cil =
1
Tp

Tp∫

0

pi (t)e
− j 2π

Tp ltdt. (2.34)

Since the filter’s frequency response H( f ) is an ideal rectangular function, only the frequencies
in the interval [− fs/2,+ fs/2] are contained in the uniformly sampled sequence yi [n]. Therefore,
the discrete time Fourier transform (DTFT) of yi [n] equals

Yi(e j2π f Ts) =
+L0

∑
l=−L0

cilZ( f − l fp), (2.35)
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Figure 2.9: Modulated wideband converter block diagram, after [48].
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L0 =
⌈
( fNY Q + fs)/2 fp

⌉
− 1, and d•e is the ceiling function that rounds the argument to the

next highest integer value. Expressing the above relationship in matrix form,

y( f ) = Ax( f ), (2.36)

where xi( f ) = Z( f +(i−L0−1) fp) for 1≤ i≤ 2L0+1 and Ail = c∗il . The relationship between
x( f ) and Z( f ) is shown in Figure 2.10. Figure 2.10 depicts the vector x( f ) and the effect of
aliasing Z( f ) in fp-shifted copies for M = 4 bands, aliasing rate fp≥ B, and two sampling rates,
fs = fp and fs = 3 fp. Each entry of x( f ) represents a frequency slice of Z ( f ) whose length
is fs. Thus, to recover z(t), it is sufficient to determine x( f ). The signal is recovered from the
channel outputs by determining the sparsest solution for x( f ) that satisfies Equation (2.36).

2.2.6 Nonlinear Affine Processing
Another novel approach to undersampling is through the use of NoLAff processing, which pro-
vides a means of reducing the sampling rate to near the information rate for a sparse signal by
exploiting nonlinearities and nonlinear signal artifacts to increase the signal diversity of weak
sparse signals. In a NoLAff receiver shown in Figure 2.11, a large probe signal, with charac-
teristics that are known a priori, is added to the signal of interest (SOI). The resulting signal is
passed through a polynomial filter after which the probe signal and its harmonic distortions are
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Figure 2.11: Block diagram of a nonlinear a�ne signal processing receiver. After [44].

removed from the signal, leaving the SOI and the intermodulation products between the probe
signal and the SOI [44].

In an undersampled signal, the original signal will alias into the frequency spectrum defined
by the sampling frequency. Nonlinear affine processing encoding allows for recovery of the
original signal by spreading the signal into more frequency locations and filtering the result. The
signal spreading creates extra copies of the original signal at deterministic frequency locations
in the full spectrum; however, these frequency locations are ambiguous after undersampling.
Filtering imparts alterations to the images that are unique based upon the signal frequency
location in full spectrum. These alterations are used to decode the signal using hypothesis
testing [44].

A system diagram for a general analog NoLAff encoder front-end is displayed in Figure 2.12.
The encoding process can be represented as a nonlinear function expressed as

f (x) = g(x+ p)−g(p) (2.37)

where p represents the probe signal and x(t) is the input signal. The function g(•) represents a
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general nonlinearity represented by a polynomial filter

g(•) =
∞

∑
i=1

ai(•).i (2.38)

where “.(?)” represents an element-wise operation. Assuming that |p| � |x|, the following
expression is obtained

f (x) = x. ·
∞

∑
k=1

ak p.(k−1). (2.39)

Nonlinear affine processing is linear with respect to the input vector, x [44]. The encoding and
undersampling process is depicted in Figure 2.13a. The input signal and the encoded nonlin-
earities are folded into the Nyquist band of the low-rate ADC. Filtering is accomplished prior
to undersampling and encodes the intermodulation products by altering amplitude and phase
values of the distortions based on their frequency location in the full spectrum. The encoded
nonlinearities and the phase differences resulting from the filtering process are exploited in the
NoLAff decoding process [44].

The NoLAff decoding process is depicted in Figure 2.13b. The encoded signal is passed through
an iterative nonlinear equalization (NLEQ) process and hypothesis signals are generated across
the full frequency spectrum. These signals are then encoded with the probe signal added and
maximum likelihood (ML) testing is conducted to determine which hypothesis is the closest
match to the input signal prior to encoding [44].
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Figure 2.13: NoLA� encoding/decoding process, (a) displays the NoLA� encoding process. (b)
displays the NoLA� decoding process. After [44].

2.2.7 Nyquist Folding Receiver
A NYFR uses deterministic non-uniform sampling where the sampling time corresponds to the
positive slope zero crossings of a linear frequency modulated sinusoidal waveform. A block
diagram of the NYFR architecture is shown in Figure 2.14. The NYFR architecture provides
for a wide analog input BW without the requirement for high speed sample and hold circuits or
Nyquist rate components. If the input signal z(t)= cos(ωct+ψ(t)) the normalized interpolation
filter output is

y(t)≈ cos(|ωc−ωs1kH | t +βψ(t)−χθ(t)), (2.40)

where kH = d(ωc/ωs1)c, β = sgn(ωc−ωs1kH), χ = βkH , and d•c rounds the argument to the
closest integer value. The signal y(t) has an induced modulation χθ (t) of the same form as the
RF clock modulation scaled by the modulation scale factor χ and its orientation β depending on
the Nyquist zone of the signal. These features allow recovery of signal information in a sparse
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Figure 2.14: Nyquist analog-to-information folding receiver block diagram. After [18].

environment without solving a computationally intensive convex optimization problem [18].

For the case where the interpolation filter is an ideal filter with transfer function,

F (ω) =





1, |ω|< |ωs1|
0 , otherwise

, (2.41)

ϕ (t) is a narrow band phase (or frequency) modulation centered at

ϕ(t) = ωs1t +θ (t) , (2.42)

and the input signal is a narrow band signal with carrier frequency ωc and information modula-
tion ψ (t),

z(t) = cos(ωct +ψ(t)), (2.43)

the normalized interpolation filter output Y (ω) is

Y (ω) =
(
(Z (ω)H (ω))∗ P̃(ω)

)
F (ω)/2π (2.44)

where P̃(ω) is the Fourier transform of the non-uniform pulse train, and H (ω) is the pre-select
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input filter frequency response. The Fourier transform of the pulse train is

P̃(ω)≈ P(ω)ωs1 ∑
k

(
δ (ω− kωs1)∗F

{
e jkθ(t)

})
(2.45)

which can be expressed as
P̃(ω) = ∑

k
Tk (ω− kωs1) (2.46)

where
Tk (ω) = ωs1P(kωs1)F

{
e jkθ(t)

}
. (2.47)

Taking the Fourier transform of Equation (2.43) results in

Z (ω) =





1
2δ (ω +ωc)∗F

{
e− jψ(t)

}
, ω < 0

1
2δ (ω−ωc)∗F

{
e− jψ(t)

}
, ω > 0

. (2.48)

Substituting Equation (2.46) and Equation (2.48) into Equation (2.44) yields

(2.49)Y (ω) =
1

4π
δ (ω + ωc − kHωs1) ∗F

{
e− jψ(t)

}
∗ TkH (ω) +

1
4π

δ (ω − ωc + kHωs1) ∗F
{

e jψ(t)
}
∗ T−kH (ω) .

And, taking the inverse Fourier transform of Equation (2.49) provides the desired result:

y(t)≈ cos(|ωc−ωs1kH | t +βψ(t)−Ψθ(t)). (2.50)

A detailed derivation of the above results can be located in the Appendix of [42].

The NYFR can also be modeled with CS and the signal recovered via `1 minimization or greedy
algorithms. The input signal z(t) is a wideband signal covering P Nyquist zones and is sparse
in the frequency domain. The input signal z(t) is represented as a Nyquist rate sampled vector
z over R2N or CN . The compressive sampling can be expressed as

y = Aζ (2.51)

where A is the L×N sensing matrix and ζ is the DFT of the input signal. The sensing matrix

29



A is
A = RΣΨ (2.52)

where the induced sample modulation matrix, Σ is a N×N diagonal matrix whose entries are
partitioned into L×L blocks and R is the horizontal concatenation of P identity matrices, each
of size L×L. Also, Ψ is a N×N matrix given by

Ψ = IP⊗Ψk (2.53)

where IP is an identity matrix with dimension P equal to the number of folds, ΨL is an L×L

IDFT matrix, and ⊗ denotes the Kronecker product. Each block represents a Nyquist zone and
contains entries of the form exp( jχθ(t)) where χ is the corresponding modulation scale factor
for the Nyquist zone and θ(t) is the RF sample clock modulation function [18]. The format of
the matrices is displayed in Figure 2.15.

In addition to solving the `1 minimization problem, recovery of signal characteristics (fre-
quency, BW, PRF, PW, modulation type) from the NYFR can be accomplished by examining
the time-frequency relationship of the signal. A spectrogram representation of the signal allows
identification of the aliased frequency, the modulation scaling factor χ from the slope of the
linear frequency modulation, and its orientation β . As a result, the Nyquist zone of the aliased
frequency can be determined, and the true signal frequency can be calculated. An example of a
spectrogram produced from a NYFR receiver is displayed in Figure 2.16a. In Figure 2.16a, the
linear frequency modulation imparted onto the aliased signals is apparent. Also, the magnitude
and orientation differences of the modulation based on the Nyquist zone in which the aliased
signals reside are clearly shown in Figure 2.16a. The even and odd numbered Nyquist zones

y
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Figure 2.15: NYFR CS model. After [18]
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Table 2.2: Modulation Scale Factor for various Nyquist Zones

Analog Frequency Index Nyquist Zone χ

0≤ ω ≤ ωs1
2 1 0 0

ωs1
2 ≤ ω ≤ ωs1 2 1 -1

ωs1 ≤ ω ≤ 3ωs1
2 3 2 1

3ωs1
2 ≤ ω ≤ 2ωs1 4 3 -2

2ωs1 ≤ ω ≤ 5ωs1
2 5 4 2

5ωs1
2 ≤ ω ≤ 3ωs1 6 5 -3

3ωs1 ≤ ω ≤ 7ωs1
2 7 6 3

are 180 degrees out of phase with each other, and the magnitude of signals increases with χ .

Another method used to determine the signal frequency is by plotting an X-gram for the re-
ceived signal. The X-gram, shown in Figure 2.16b, is produced by demodulating the received
signal using integer values of χ , for instance from -20 to 20, determining the time-averaged
power spectrum of the demodulated signal, and plotting the resulting data as an image. Signals
can be identified at the mid-point of the X shapes from which the X-gram derives its name.
Figure 2.16b displays the X-gram representation of the data from which Figure 2.16a was de-
rived. The correlation between the signals in the spectrogram and the X-gram can be clearly
observed. An example of the various Nyquist Zones and values for χ are shown in Table 2.2
and Figure 2.17.

If the RF sample clock is a linear frequency modulated sinusoid and the modulation is known,
the slope of the waveform, the modulation scale factor χ and its orientation β can be used
to determine the Nyquist zone of a signal and subsequently resolve the aliased frequency. If
a general narrow band modulation signal is used, the derivative of the waveform in the time-
frequency plane would be used in place of the slope (provided the derivative was not equal to
zero). It was demonstrated in [43] that the Nyquist zone Nz can be determined by finding

min(Sp−χ (i)St)
2 (2.54)

where the slope of the pulse analyzed is equal to Sp, the slope of the modulation clock is St ,
and χ (i) are the possible modulation scale factors corresponding to the system bandwidth. The
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Figure 2.16: NYFR detection methods. (a) shows an example of a spectrogram representation of the
received signal. (b) shows an example of an X-gram representation of the signal. After [18].

Nyquist zone is equal to
Nz = imin−1. (2.55)

where imin is the index corresponding to the modulation scale factor that satisfies Equation (2.54).
This feature of the NYFR simplifies signal information recovery in a sparse environment with-
out solving a computationally intensive `1 minimization problem [18]. An autonomous detec-
tion scheme to determine the signal parameters including the pulse slope using a quadrature
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mirror filter bank (QMFB) to execute the wavelet decomposition of the signal was presented
in [43].

2.2.8 Time encoding machine
A time encoding machine (TEM) is a unique implementation of CS that converts an analog
signal z(t) with a continuous voltage range to a binary amplitude signal and encodes the infor-
mation of z(t) in the time points when the binary signal x(t) switches sign. The basic structure
of a TEM is shown in Figure 2.18. It consists of an input transconductance amplifier, a feedback
1-bit digital-to-analog converter (DAC), an integrator, and a hysteresis quantizer [49], [50]. The
relationship between the signal and the time sequence {tk} satisfies the relationship

tk+1∫

tk

(
g1z(u)+(−1)kg3

)
du = (−1)k2δ , (2.56)

where g1 and g3 are gain terms, {tk} is the encoded time sequence, and δ is as shown in Fig-
ure 2.18. The TEM transfer function exhibits the characteristics of a low pass filter due to the
integrator. When there is no signal present at the input of the TEM, the output from the TEM is
a square wave with a period Tp = 4δ/g3 with a 50% duty cycle. When the input is a bounded
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signal such that |z(t)|< b, the intervals between time points, Tk = tk+1− tk satisfy

2δ
g3 +g1b

≤ Tk ≤
2δ

g3−g1b
. (2.57)

The time intervals are converted to voltage levels and measured through a sampler as shown in
Figure 2.19 [49], [50].

This particular architecture requires sampling at above the Nyquist rate if the maximum interval
between the time points Tk is less than half the minimum period of the signal’s components.
However, if the sample space is sparse, CS can be accomplished using a TEM. The signal

dt∫1g

3g

+
−

( )z t

Hysteresis 
Quantizer 

( )x t

1 bit DAC 

gm cell 

δδ−
1

1−

Figure 2.18: Time encoding machine block diagram. After [49].
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Figure 2.19: TEM receiver architecture. After [49], [50].
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model can be expressed as

z(t) =
N−1

∑
m=1

cm exp( j2π f mt) (2.58)

where f is the fundamental frequency of the periodic signal z(t). The compressive sensing
problem can then be stated as

y = PΦ1c1 (2.59)

where P is a square matrix with entries

Pi, j =





−1, i = j−1

1, i = j

0, otherwise

(2.60)

and
Φ1k,m = exp( j2π f mtk) (2.61)

for 0≤ k ≤ n, and c1m = g1cm
j2πm f [49], [50].

In order to satisfy RIP, the measurement matrix is randomized by either randomizing the gain
parameter, g3, shown in Figure 2.20a, or the switching threshold, δ , shown in Figure 2.20b. In
both architectures, a pseudorandom number generator is triggered by the switching edge of the
binary signal, x(t). The advantage of the architecture in Figure 2.20b over that of Figure 2.20a
is that the voltage level of the random number generator during the transition period between
two random numbers does not affect the encoding or reconstruction process provided it reaches
a steady state value prior to the hysteresis quantizer switching at the next time point [49], [50].

2.2.9 Comparison of Compressive Sensing Receivers
By comparing the various attributes of the major CS receivers, additional insight can be gained
regarding the advantages and disadvantages of each receiver architecture. Several aspects were
considered in [18], including whether exact CS signal reconstruction is possible, if Nyquist
rate components are required, if single channel reconstruction is possible, if the data is easily
visualized, if pseudo-random number generators are required, if the architecture is a folding
architecture, and whether the architecture is linear. These attributes are summarized for each
CS receiver architecture in Table 2.3.

The aspects examined help to determine which CS receiver architecture is best suited for an
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Figure 2.20: Time encoding machine random implementations (a) gain control, (b) random switching
threshold. After [49], [50].

application. For instance, if a user interface requiring operator interpretation of the data is
required, the NYFR, CMUX or MWC are well suited; however, the TEM or RD are not since
the data is spread through use of a P-N code. Similarly, if it is desired to use a CS reconstruction
algorithm in a linear receiver architecture, a receiver applying NoLAff processing or the TEM
would not be a viable solutions; however, the other receiver architectures examined in Table 2.3
would be well suited for the application. If minimizing the amount of hardware required is the
paramount consideration, then a single channel approach is desirable eliminating the RADC,
CMUX, and MWC from consideration.

In this chapter, CS theory was introduced and different CS receiver architectures were presented.
In Chapter 6 and Chapter 7, CS theory is applied to undersampled receiver architectures based
on the SNS . In the following chapter, symmetrical number system theory is presented.
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Table 2.3: Comparison of CS receivers. After [18].

Receiver RD Random
Filter

RADC CMUX MWC NoLAff NYFR TEM

Section 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8

Is CS reconstruction
possible?

Y Y Y Y Y N 1 Y Y 2

Are all components
sub-Nyquist?

N N N Y N Y Y N

Is single channel
reconstruction

possible?

Y Y N N 3 N Y Y Y

Can data be easily
visualized?

N Y N Y Y Y Y N

Is a pseudo-random
number generator

required?

Y N Y Y Y N N Y

Is the architecture a
folding one?

N Y N N Y Y Y N

Is the architecture
linear?

Y Y Y Y Y N Y N

1 NoLAff output cannot be reconstructed using traditional CS algorithms, however, signal recon-
struction is possible and is relatively straight forward.

2 TEM requires a nonlinear transform in addition to CS reconstruction.
3 CMUX requires multiple RF tuner channels and mixing circuits.
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CHAPTER 3:

Symmetrical Number Systems

Symmetrical folding waveforms are the most common types of waveforms in engineering sci-
ence and appear naturally in many engineering disciplines and system analysis techniques. Ex-
amples include sinusoidal signals in electrical engineering, symmetrical affine control systems
in mechanical engineering, and symmetrical airfoil design in aeronautical engineering. To ex-
tract the maximum amount of information from symmetrical folding waveforms, symmetrical
number systems were formulated that are based on a set of coprime moduli. Symmetrical num-
ber systems include the symmetrical number system (SNS) [51], [52], the optimum symmetrical
number system (OSNS) [53], and robust symmetrical number system (RSNS) [8], [54]–[56]. In
the following sections, the SNS, OSNS, and the RSNS are discussed.

3.1 Symmetrical Number System
The SNS is a modular number system that consists of N separate periodic symmetrically folded
sequences based on a set of coprime moduli mi = {m1,m2, . . . ,mN}. A symmetrical residue bh

is defined as
bh = min{h,m−h} (3.1)

where h is an integer and 0 ≤ h < m [51]. This function extends periodically with period m,
such that

bh+nm = bh (3.2)

where n is an integer and bh is the symmetrical residue of h+nm mod m. If m is odd, the row
vector consisting of the symmetrical residues is

bm =
[
0,1, . . . ,

⌊m
2

⌋
,
⌊m

2

⌋
, . . . ,2,1

]
, (3.3)

where b•c is the floor operator. For m even,

bm =
[
0,1, . . . ,

m
2
,
m
2
−1, . . . ,2,1

]
. (3.4)

The vector bm represents one period of a SNS folded sequence of length m.
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Each integer h is represented by a vector,

Bh = [b1
h,b

2
h, . . . ,b

N
h ]

T , (3.5)

composed of the N symmetrical residues bi
h for that integer. For example, the symmetrical

residues for a SNS with mi = {3,4} are listed in Table 3.1 and graphically displayed in Fig-
ure 3.1. The ambiguous results are annotated in Table 3.1 using bold font.

Table 3.1: Symmetrical number system for moduli, mi = {3,4}.
h 0 1 2 3 4 5 6 . . .

mi = 3 0 1 1 0 1 1 0 . . .

mi = 4 0 1 2 1 0 1 2 . . .

←− M̂SNS −→

The span of integer values where each vector Bh uniquely defines an integer is the dynamic
range of the SNS M̂SNS. If one of the moduli is an even number, M̂SNS is defined as

M̂SNS = min

{
m1

2

j

∏
l=2

mil +
N

∏
l= j+1

mil

}
(3.6)

where j ranges from 1 to N− 1, mi2,mi3, . . . ,miN range over all permutations of {2,3, . . . ,N},

0 2 4 6 8
0

1

2

h

b 3

0 2 4 6 8
0

1

2

h

b 4

Figure 3.1: Graphical representation of a symmetrical number system for moduli mi = {3,4} .
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and m1 is the even modulus [51]. If all of the moduli are odd numbers,

M̂SNS = min

{
1
2

j

∏
l=1

mil +
1
2

N

∏
l= j+1

mil

}
(3.7)

where j ranges from 1 to N−1, and mi1,mi2, . . . ,miN range over all permutations of {1,2, . . . ,N}
[51]. In the example shown in Table 3.1 and Figure 3.1, Equation (3.6) results in M̂SNS = 5.

3.2 The Relationship Between the Symmetrical Number Sys-
tem and the Discrete Fourier Transform

A fundamental principle in DSP is that an analog frequency f can be represented by a digital
frequency ω in the z-domain where ω = (2π f )/ fs and −π ≤ ω ≤ π . If f > fs/2, it will map
to a digital frequency equal to ω − 2πn where n is an integer. For example, if f = 1.5 fs then
ω = π which is indistinguishable from an analog frequency of f = 0.5 fs. This phenomenon is
called aliasing.

The DFT of a discrete signal x(p) is given by

X(k) =
P−1

∑
p=0

x(p)e
− j2πkp

P (3.8)

where k = 0,1, . . . ,P−1. Application of the DFT to a discrete time signal x(p) yields a discrete
power spectrum |X(k)|2 where the energy in the signal is mapped to discrete digital frequencies,
ω = (2πk)/P. There are P discrete digital frequencies given by

ω =
2π
P

[
0,1, . . . ,

⌊
P
2

⌋
,

⌊
P
2

⌋
, . . . ,P−2,P−1

]
(3.9)

for P odd and
ω =

2π
P

[
0,1, . . . ,

P
2
,
P
2
+1, . . . ,P−2,P−1

]
(3.10)

for P even.

For real signals, the digital frequencies in the range of π ≤ ω ≤ 2π are indistinguishable from
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those between 0≤ ω ≤ π; therefore, Equation (3.9) and Equation (3.10) can be recast as

ω =
2π
P

[
0,1, . . . ,

⌊
P
2

⌋
,

⌊
P
2

⌋
, . . . ,1

]
(3.11)

for P odd, and

ω =
2π
P

[
0,1, . . . ,

P
2
,
P
2
−1, . . . ,1

]
(3.12)

for P even. Comparing Equation (3.3) and Equation (3.4) to Equation (3.11) and Equation (3.12),
the exact mapping of the DFT into the SNS format is observed [51]. This mapping of the
DFT into the SNS structure allows receiver architectures based on SNS coprime undersam-
pling to resolve single integer valued frequency ambiguities resulting from aliasing provided
that f < M̂SNS.

3.3 Optimum Symmetrical Number System
Similar to the SNS, the OSNS is composed of N sequences based on a set of coprime moduli,
mi = {m1,m2, . . . ,mN}. The integers within each OSNS sequence form a symmetrically folded
sequence with the period of the sequence equal to twice the coprime modulus 2mi. The integer
values within the period of each individual OSNS sequence are given by the row vector

xmi = [0,1, . . . ,mi−1,mi−1, . . . ,1,0]. (3.13)

Due to the presence of ambiguities, the integers within Equation (3.13) do not form a complete
system of length 2mi by themselves. Similar to the SNS, the ambiguities that arise within
the modulus are resolved by considering the paired values from all N sequences together. By
considering the N paired sequences, the OSNS is rendered a complete system having a one-to-
one correspondence with the residue number system (RNS).

The dynamic range of the OSNS equals the dynamic range of the RNS

M =
N

∏
i=1

mi, (3.14)

which is also the location of the first repetitive vector [53]. As an example, N = 2 OSNS with
mi = {3,4} is displayed in Table 3.2. The ambiguous values are shown in bold font. In [53],
the OSNS was shown to be an optimum scheme by using the multiplication principle. The
OSNS has the largest dynamic range of the symmetrical number systems for a given moduli
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Table 3.2: Optimum symmetrical number system with moduli, mi = {3,4} and dynamic range, M = 12.

m1 0 1 2 2 1 0 0 1 2 2 1 0 0
m2 0 1 2 3 3 2 1 0 0 1 2 3 3

h 0 1 2 3 4 5 6 7 8 9 10 11 12

set, and therefore, requires the least number of comparators in folding ADC applications [53]
or elements in DF antenna array applications [57]. However, the OSNS and the SNS can have
the values of the symmetrical residues in each sequence change for an increment in the integer
value represented by the N−tuple of symmetrical residues. Therefore, errors (invalid codes)
can potentially occur if the circuitry (comparator circuits for example) do not change state
simultaneously. To prevent this source of errors, the RSNS was developed which has an inherent
integer Gray code property. The RSNS is discussed in the following section.

3.4 Robust Symmetrical Number System
The RSNS is a modular-based number system consisting of N ≥ 2 integer sequences with each
sequence associated with a coprime modulus mi. The RSNS is based on the following sequence:

{
x
′
m

}
= [0,1,2, . . . ,m−1,m,m−1, . . . ,2,1] . (3.15)

To form the N−sequence RSNS, each term in Equation (3.15) is repeated N times in succession.
Therefore, the integers within one folding period of a sequence are:

{xm}=[0, . . . ,0,1,1, . . .1, . . .m−1, . . . ,m−1,

m, . . .m,m−1, . . . ,m−1, . . . ,1, . . .1]
. (3.16)

This results in a periodic sequence with a period of Pm = 2Nm [8], [58]. Each sequence cor-
responding to mi is also shifted left (or right) by si = i−1 where i ∈ {1,2 . . . ,N} and the shift
values, si = {s1,s2, . . .sN}, form a complete residue system modulo N. The resulting structure of
the N sequences ensures that two successive RSNS vectors (paired terms from all N sequences)
when considered together, differ by only one integer resulting in an acyclic integer Gray code
property [8], [59].

Each RSNS sequence is extended periodically with period Pi = 2Nm, as xh+n2Nm = xh, where
n ∈ {0,±1,±2, . . .}. Therefore, xh is a symmetrical residue of (h+ n2Nm) modulo 2Nm. An
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integer h is represented by a vector Xh =
[
x1,h,x2,h, . . . ,xN,h

]T of N paired integers from each
sequence at h. For example, the left shifted N = 3 RSNS with mi = {3,4,5}, which is displayed
in Table 3.3 and Figure 3.2, represents h = 5 with Xh = [1,2,2]T . Examining Table 3.3 and
Figure 3.2, the integer Gray code property is evident.

Since the integer values within each modulus consists of 2Nm integers, the symmetrical residues
are determined by first subtracting an integer multiple of 2Nm from h as

ni = h−
⌊

h
2Nmi

⌋
2Nmi. (3.17)

The symmetrical residue xh is then calculated as [8], [58]

xh =





⌊
ni− si

N

⌋
, si ≤ ni ≤ Nmi + si +1

⌊
2Nmi +N−ni + si−1

N

⌋
, Nmi + si +2≤ ni ≤ 2Nmi + si−1

. (3.18)

The N-sequence RSNS is periodic with a fundamental period of

Pf = 2NM, (3.19)

where M =
N
∏
i=1

mi is the dynamic range of a RNS [8], [56], [57].

Closed-form expressions for M̂RSNS exists for only few specific cases. In [8], [54], a closed-form

Table 3.3: Three sequence robust symmetrical number system structure for moduli mi = {3,4,5},
after [8].

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

Xh

m1 = 3 0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1 . . .

m2 = 4 0 0 1 1 1 2 2 2 3 3 3 4 4 4 3 3 3 . . .

m3 = 5 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 4 . . .
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Figure 3.2: Graphical depiction of a three-sequence robust symmetrical number system for moduli
mi = {3,4,5}. After [8].

expression for a N = 2 RSNS is reported, where

M̂RSNS = 6m1−3, and m2 = m1 +1 when m1 ≥ 3 (3.20)

M̂RSNS =





4m1 +2m2−5, when m2 ≤ m1 +2

4m1 +2m2−2, when m2 ≥ m1 +3
(3.21)

and 5 ≤ m1 < m2. The other published closed-form expression for M̂RSNS is when N = 3 and
mi = {m−1,m,m+1} with m even and m> 3 [8], [57]. In this case,

M̂RSNS =
3
2

m2 +
15
2

m+7. (3.22)

Additional closed-form expressions for M̂RSNS are developed and presented in Chapter 4.
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Figure 3.3: Graphical representation of the single sequence ambiguity types for a robust symmetrical
number system (N=3, m=5), after [8].

3.5 Robust Symmetrical Number System N-Sequence
Ambiguity Analysis

In the fundamental period of an N-sequence RSNS, there are three types of ambiguities, Type 0,
Type 1, and Type 2 that are illustrated in Figure 3.3. Type 0 ambiguities occur periodically in
each RSNS sequence. Type 1 ambiguities occur across the folds of each sequence, and Type 2
ambiguities occur at the repetition of each number that results in the staircase sequence. Each
RSNS sequence can be decimated into N subsequences where each subsequence is composed
of values of the original sequences at h ≡ 0 mod N, h ≡ 1 mod N, . . . , and h ≡ N− 1 mod N.
By examining these subsequences, the Type 2 ambiguities are eliminated leaving only Type 0
and Type 1 ambiguities. Table 3.4 illustrates the subsequence structure for a single sequence
of a three-sequence RSNS. Each subsequence can be plotted and shown to have terms with the
same arrangement as the SNS. Also, by analyzing the parity of the RSNS in Table 3.5, it can be
shown that the parity of the sequence repeats at a period of 2N; therefore, ambiguous vectors
Xh and Xh+k occur at multiples of six for this example [8], [55], [60].
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Table 3.4: Single sequence of a three-sequence RSNS illustrating the decomposition into subsequences,
after [8].

mi = 3 xh 0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1

h≡ 0 mod 3 xh 0 1 2 3 2 1

h≡ 1 mod 3 xh 0 1 2 3 2 1

h≡ 2 mod 3 xh 0 1 2 3 2

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 3.5: Parity (e = even, o = odd) of residue vectors, after [8].

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m1 = 3 e e e o o o e e e o o o e e e o o

m2 = 4 e e o o o e e e o o o e e e o o o

m3 = 5 e o o o e e e o o o e e e o o o e

The ambiguity locations are determined by solving the congruence equations for each combi-
nation of Type 0 and Type 1 ambiguities that exist. The various ambiguity combinations are
referred to by three digit Case Numbers where the first digit refers to the number of Type 1 am-
biguities and ranges from zero to N−1. The second digit represents the particular assignment of
Type 0 and Type 1 ambiguities to specific sequences. For instance, for a three-sequence RSNS
having one Type 1 ambiguity and two Type 0 ambiguities, the possible ambiguity combinations
are

{amb3,amb2,amb1}=





{0,0,1}Case11X

{0,1,0}Case12X

{1,0,0}Case13X

, (3.23)

where ambi is the ambiguity type for the i-th channel. The third digit of the case number
represents the subsequence index and ranges from zero to N−1 [8].

For an N-sequence RSNS, there are 2N possible Type 0 and Type 1 ambiguity combinations.
Each combination has N subsequences with the exception of when all ambiguities are Type 0
ambiguities so the total number of possible ambiguity combinations is N2N−N +1. The num-
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ber of ambiguity combinations containing T1 Type 1 ambiguities is

N
(

N
T1

)
= N

N!
T1!(N−T1)!

. (3.24)

To determine M̂RSNS, the ambiguity locations are determined by solving congruence equations
for all combinations of Type 1 and Type 0 ambiguities, and the largest span of unambiguous
values is identified which is equal to M̂RSNS. The location of the Type 0 ambiguity for a single
i-th sequence is

k
2N
≡ 0 mod mi (3.25)

and for the Type 1 ambiguities, the congruence equations are of the form

k
2N
≡





− h
N

mod mi, if h≡ 0 mod N

−h−1
N

mod mi, if h≡ 1 mod N
...

−h+ i−1
N

mod mi, if h≡ N− i+1 mod N
...

−h+1
N

mod mi, if h≡ N−1 mod N

(3.26)

and account for each sequence i being shifted by i−1 positions to the left. Table 3.6 summarizes
the solution to the congruence equations and defines the centers of ambiguity (COA) for all
possible case numbers [8], [55], [60] for a N-sequence RSNS. The COA is defined as the
midpoint between the ambiguous vector pairs and is presented in more detail in Chapter 4.

In Table 3.6, the value of hs is solved for by solving a set of congruence equations using the CRT.
For example, the congruence equations that represent the shift value hs1 for a four-sequence
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Table 3.6: N-sequence robust symmetrical number system summary of congruence equation solutions
for ambiguity locations. Ambiguities exist at h and h+k. Index i denotes the sequences with Type 1
ambiguities and the index j denotes the sequences containing Type 0 ambiguities. After [8].

Case Number h is k is a multiple of COA

010 Anywhere in fundamental period Pf = 2N
N
∏
i=1

mi None

1X0 h = aNmi−
k
2

2N
M
mi

aNmi

1XX h = aNmi +hs−
k
2

2N
M
mi

hs +aNmi

2X0 · · ·(N−1)X0 h = aN ∏
i

mi−
k
2

2N ∏
j

m j aN ∏
i

mi

2XX · · ·(N−1)XX h = aN ∏
i

mi +hs−
k
2

2N ∏
j

m j hs +aN ∏
i

mi

N10 h = aN
n=N
∏

n=1
mn−

k
2

2N aN
n=N
∏

n=1
mn

N1X h = aN
n=N
∏

n=1
mn +hs−

k
2

2N hs +aN
n=N
∏

n=1
mn

RSNS are
hs1−1

4
≡ 0 mod m1

hs1−1
4
≡ 0 mod m2

hs1−1
4
≡ 0 mod m3

hs1 +3
4
≡ 0 mod m4

. (3.27)

The congruence equations are represented by a matrix that is formed by collecting the Type 1
symmetrical residue numerators into a matrix form with each column index corresponding to
its corresponding modulus. This matrix will be referred to as a shift matrix. For example,
Equation (3.27) is represented by the second row of the matrix. The shift matrix has a unique
structure where the first column is [0,−1,−2, . . . ,N−1]T and the subsequent columns are gen-
erated by circular shifting the previous column up and incrementing each value by one. An
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example of the shift matrix for N=4 is

hs =⇒




0 0 0 0
−1 −1 −1 3
−2 −2 2 2
−3 1 1 1



. (3.28)

In general, the shift matrix is a N×N matrix defined as

hs =⇒




0 0 · · · · · · · · · 0
−1 −1 · · · · · · −1 N−1

−2 · · · · · · −2 N−2
...

... · · · . . . . . . . . . ...

−N +2 −N +2 . . . . . . . . . 2
−N +1 1 · · · · · · 1 1




. (3.29)

Note that the last column is of the form [0,N−1,N−2, · · · ,1] and that the right to left diagonals
are formed by subtracting one from the previous element on the diagonal. Subsequently, the
main right to left diagonal is equal to the first column, that is




hs11

hs21
...

hs(N−1)1

hsN1



=




hs1N

hs2(N−1)
...

hs(N−1)2

hsN1



. (3.30)

The congruence equations are formed based on the sequences containing the Type 1 ambiguities
and the subsequences that contain the ambiguities. For example, if N = 4 and the case number
is 232, the sequences containing the Type 1 ambiguities would be those formed by moduli, m2

and m3, and referring to Equation (3.28), the third row corresponds to the subsequence. The
resulting system of congruence equations are

hs−2
4
≡ 0 mod m2

hs +2
4
≡ 0 mod m3.
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In this chapter, the SNS, OSNS, and RSNS were discussed. In the following chapter, an effi-
cient search algorithm for determining M̂RSNS is presented that is applied to develop additional
closed-form expressions for several families of moduli sets. The RSNS is applied to a photonic
DF array in Chapter 5, and the SNS is applied to CS receiver architectures in Chapter 6 and
Chapter 7.
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CHAPTER 4:

Determining Additional Closed-Form Expressions for the

Dynamic Range of the Robust Symmetrical Number

System

The RSNS has an inherent integer Gray code property that makes the RSNS particularly attrac-
tive for error control in both analog and digital signal processing applications. The RSNS has
been shown to be useful in software radio systems for sample rate conversion [61], and in elec-
tronic [62], [63], photonic [58] and superconducting [64] folding ADCs. Due to the inherent
symmetry within the modulus, a new theoretic transform for error detection and control was
reported in [65] and applied to CDMA wireless communications [66]. The complexity of DF
antenna systems is also reduced through use of the RSNS by decomposing the spatial filtering
operation into a number of parallel sub-operations [57]. Consequently, each sub-operation only
requires a complexity in accordance with that modulus and a much higher spatial resolution is
achieved after the results of these less complex sub-operations are recombined. The use of the
RSNS in radar waveform design has also been reported in [67] to extend the capabilities for
target detection.

Despite the many diverse applications for the RSNS, the lack of a general closed-form expres-
sion for M̂RSNS has limited its wide-spread adoption. In this chapter, an efficient algorithm [8],
[55] is presented for determining M̂RSNS, and the computational complexity of the efficient al-
gorithm is compared to that of a naïve search algorithm. The efficient algorithm is then used to
develop data sets for several groups of coprime moduli that are curve fitted to generate closed-
form expressions for M̂RSNS. The closed-form analytical expressions generated from curve
fitting are verified by generating them from the equations defining the ambiguity locations in
Table 3.6.

4.1 Efficient Algorithm for Determining the Dynamic Range
of the Robust Symmetrical Number System

In this section, an efficient algorithm is developed to efficiently compute M̂RSNS for N RSNS
integer sequences with arbitrary coprime moduli, mi, where mi ≥ 2, by first considering all
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the minimal pair ambiguity locations (h1,h2). For the general N−sequence RSNS case, let
C =

{
(h1,h2) | 0≤ h1 < h2 < Pf

}
where Xh1 = Xh2 . A pair (h1,h2) ∈ C is minimal if there

does not exist a pair
(
h̃1, h̃2

)
∈C such that h1 ≤ h̃1 < h̃2 ≤ h2 and the shorter sequence length,

h̃2− h̃1 < h2− h1. The largest distance between consecutive minimal pairs, h2− h1− 1, is the
M̂RSNS and h1+1 is the starting position of M̂RSNS [56]. It then follows that M̂RSNS <M = ∏mi,
the dynamic range of the RNS [8].

In [8], it was demonstrated that the distance between ambiguous vector pairs is always odd;
therefore, the COA is defined as the midpoint between the ambiguous vector pairs, COA =

(h2 +h1)/2. Given two minimal pairs P1 = (h1,h2) ∈C with COAP1 and P2 = (h′1,h
′
2) ∈C with

COAP2 and COAP1 <COAP2 , the pairs are defined as consecutive if there does not exist a minimal
pair P3 = (h′′1,h

′′
2)∈C with COAP3 such that COAP1 <COAP3 <COAP2 . Therefore, if (h1,h2)∈C

and (h′1,h
′
2)∈C are consecutive minimal pairs, the maximal size M̂RSNS = (h′2−1)−(h1 +1)+

1 = h′2−h1−1 is the M̂RSNS. Furthermore, h1+1 is the beginning position of the M̂RSNS. Since
M̂RSNS is computed using consecutive minimal pairs (h1,h2) ∈ C and (h′1,h

′
2) ∈ C, only the

positions of the minimal pairs that can affect the length of M̂RSNS are required to be computed
and the rest can be ignored [56], [68].

The algorithm for computing M̂RSNS relies on a number of lemmas, presented in Section 4.1.1,
most of which are the result of an analysis of the locations of all vector ambiguities provided
in [8]. Table 3.6 summarizes the N−channel RSNS vector ambiguity locations. The rows in
Table 3.6 separate the locations of the ambiguity pairs into seven categories based on the type

of ambiguity.

4.1.1 Theoretical Basis for Efficient Algorithm
In this section, the basis for the efficient algorithm for determining M̂RSNS is presented in a
series of lemmas and theorems. From this theoretical foundation, the steps of the algorithm are
developed and presented in Section 4.1.2.

Lemma 1. There are 2N distinct cases of repeated ambiguity pairs, each with a different ambi-

guity length and COA spacing. All but one of the 2N cases have N subcases that have the same

number of COAs and ambiguity lengths in Pf , but the COA for each of the subcases is shifted

by a particular value, hsi .

The N COA shifts (one for each subcase) are computed by solving a set of N congruence equa-

tions using the CRT. The subcase where hs0 = 0 is called the base case and is shown in rows 2,
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4, and 6 in Table 3.6 [56].

Proof. See the ambiguity analysis discussion in Section II of [8].

Lemma 2. Minimal pairs are computed using the first multiple of k from the third column in

Table 3.6.

Proof. Any vector pair computed using a higher multiple of k forms a vector pair that encom-
passes and is symmetric about the vector pair obtained using the lower multiple of k. Therefore,
any vector pair computed using other than the first multiple of k is not minimal [8].

Lemma 3. For every ambiguity pair with a COA at h, there is an ambiguity pair with the same

length at h+Pf /2.

Proof. Given a general COA for any case at

h = a

(
N ∏

i
mi

)
, (4.1)

where the subscripts i are the indices of all vector elements with Type 1 ambiguity, there is also
a COA at h+Pf /2 because

a

(
N ∏

i
mi

)
+

Pf

2
= a

(
N ∏

i
mi

)
+N

N

∏
n=1

mn

= a

(
N ∏

i
mi

)
+N

(
∏

i
mi ∏

j
m j

)

=

(
a+∏

j
(m j)

)(
N ∏

i
(mi)

)

= b

(
N ∏

i
mi

)
,

(4.2)

where a and b are any integers, j corresponds to the vector elements with Type 0 ambiguities,
and i corresponds to the vector elements with Type 1 ambiguities. The result is that ambiguity
pairs are symmetric about Pf /2 [56], [68].

Lemma 4. There is always an ambiguity with a COA at h = 0 and h = Pf /2 with a length of

2N +1, which is also the ambiguity with the smallest length.
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Proof. This is straightforward via inspection of row 6 in Table 3.6.

Lemma 5. Using Lemma 3 and Lemma 4, only ambiguities from −N to Pf /2+N need to be

considered when computing M̂RSNS.

Proof. Since Lemma 3 showed that ambiguity pairs are symmetric about Pf /2, and M̂RSNS is
computed from minimal ambiguity pair locations, the same length M̂RSNS exists from h = 0 to
h = Pf /2 as exists from h = Pf /2 to h = Pf [56], [68].

Lemma 6. M̂RSNS is upper bounded by (using the complement notation Ī = {1, . . . ,n}\ I) [56],

[68]

M̂RSNS ≤ BM̂RSNS
:= N min

I⊆{1,...,n}

[
∏
i∈I

mi +2∏
j∈Ī

m j

]
−1. (4.3)

That is, each of the rows in Table 3.6 produce a unique set of minimal pairs and the row that
has the smallest local M̂RSNS (the one that minimizes Equation (4.3)) provides an upper bound
on M̂RSNS. Any ambiguity pair that has a length greater than BM̂RSNS

does not affect M̂RSNS and
can be ignored (i.e., M̂RSNS is smaller than the distance between the minimal pair and therefore
cannot contain the vector pair) [8].

As an example, let N = 3 and mi = {3,4,5}. Computing the expressions inside the minimum
of Equation (4.3), for each of the 2n subsets I ⊆ {1,2, . . . ,n},

B1 = [1+2(3 ·4 ·5)] = 121

B2 = [3+2(4 ·5)] = 43

B3 = [4+2(3 ·5)] = 34

B4 = [5+2(3 ·4)] = 29

B5 = [(3 ·4)+2(5)] = 22

B6 = [(3 ·5)+2(4)] = 23

B7 = [(4 ·5)+2(3)] = 26

and

B8 = [(3 ·4 ·5)+2(1)] = 65.

(4.4)

Applying Lemma 6,
BM̂RSNS

= 3min
i
(Bi)−1 = 3 ·22−1 = 65. (4.5)
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Theorem 7. Assuming M ≥ 4, an upper bound for M̂RSNS is

BM̂RSNS
≤ Nd2

√
2Me−1. (4.6)

Moreover, if N ≥ 3, M̂RSNS <M.

Proof. Setting x = ∏i∈I mi, the expression that must be minimized in the right-hand side of
Equation (4.3) is the function

f (x) = x+
2M
x
,x≥ 1. (4.7)

By examining the derivative of f (x), a simple calculus analysis reveals that the function has a
global minimum at x =

√
2M, namely 2

√
2M, and the first inequality is shown [68].

The proof of M̂RSNS < M for N = 3 is contained in [8]. Examples when N = 3 are listed in
lexicographical order in Table 4.1.

Table 4.1: Comparison of the dynamic range for a three-sequence robust symmetrical number system
to that of a three-sequence residue number system, from [68].

mi M̂RSNS M

{2,3,5} 28 30

{2,3,7} 35 42

{2,3,11} 46 66

{3,4,5} 43 60

Now, assume that N ≥ 4. The next step requires proving that Nd2
√

2Me < M, for N ≥ 4.
Starting with the simple inequality

Nd2
√

2Me ≤ N(2
√

2M+1), (4.8)

it is sufficient to show that N(2
√

2M + 1) ≤ M, which is equivalent to N
√

8M ≤ M−N, and
8N2M ≤M2 +N2−2MN, that is, M2−2N(4N +1)M+N2 > 0.

Looking at the previous inequality as the sign of a concave-up parabola in M, the inequality is
true, as long as

M > 4N2 +N +2N
√

4N2 +2N. (4.9)
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If N = 4, then M ≥ 210, and the right-hand side of Equation (4.9) is ∼ 209.881; if N = 5,
then M ≥ 2310, and the right-hand side of Equation (4.9) is ∼ 299.88. Thus, the inequality
Equation (4.9) is true for 4≤ N ≤ 5.

Next, it is observed that for any N ≥ 3 (use the fact that the moduli are coprime): if N = 3, then

M ≥





2 ·3 ·5 = 30, N = 3

2 ·3 ·5 ·7 = 210, N = 4

etc.

(4.10)

M ≥ 2 ·3 ·5 = 30; if N = 4, then M ≥ 2 ·3 ·5 ·7 = 210, etc. For arbitrary N, an easy inductive
procedure reveals that M ≥ PN#, where PN# = ∏N

k=1 pk is the primorial function, and pk is the
kth prime. It is well–known (and easily derivable by using the prime number theorem [69]) that
PN# = exp[(1+o(1))n logn].

Assume N ≥ 6. It is immediate that PN#> (N +1)!.

For N ≥ 6, the right hand side of the above inequality satisfies

(N +1)!> 4N2 +N +2N
√

4N2 +2N, (4.11)

which implies Equation (4.11).

Proving Equation (4.11) by induction on N, if N = 6, then

(6+1)!−
(

4 ·62 +6+2 ·6
√

4 ·62 +2 ·6
)
> 4740,

and so, the inequality Equation (4.11) is true in this case. Assuming that the inequality is true
for N, it is shown for N + 1 to be true. Starting from Equation (4.11), multiply both sides by
N +2 to get

(N +2)!> (N +2) ·
(

4N2 +N +2N
√

4N2 +2N
)
. (4.12)

It will be sufficient to show that

(N +2)
(

4N2 +N +2N
√

4N2 +2N
)
> 4(N +1)2 (4.13)

+(N +1)+2(N +1)
√

4(N +1)2 +2(N +1). (4.14)
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Since
(N +2)(4N2 +N)−4(N +1)2− (N +1) = 4N3 +5N2−7N−5 (4.15)

is increasing and greater than 0, for N ≥ 6, the previous inequality will follow if

(N +2)2N
√

4N2 +2N > 2(N +1)
√

4(N +1)2 +2(N +1), (4.16)

which by squaring both sides transforms into

−24−88N−120N2−40N3 +80N4 +72N5 +16N6 > 0, (4.17)

which is true for N ≥ 6. This concludes the proof of the theorem [56], [68].

Lemma 8. In the case of 3-channel RSNS of coprime moduli m1 < m2 < m3, M̂RSNS is upper

bounded by

BM̂RSNS
=





N(m1m2 +2m3)−1 if m1m2 ≥ m3

N(m3 +2m1m2)−1 if m2m2 < m3.
(4.18)

Proof. Minimizing the expressions (from Equation (4.3)):

α1 = m1m2 +2m3

α2 = m1m3 +2m2

α3 = m2m3 +2m1

α4 = m1m2m3 +2

α5 = 1+2m1m2m3

α6 = m1 +2m2m3

α7 = m2 +2m1m3

α8 = m3 +2m1m2.

(4.19)

By inspection, α1 < α2 < α3 < α4 and α8 < α7 < α6 < α5. Therefore, only α1 and α8 need to
be compared, which is equivalent to comparing m1m2 and m3.

For instance, if N = 3, mi = {3,4,5}, since m1m2 ≥ m3, then BM̂RSNS
= 3(3 ·4+2 ·5)−1 = 65

[68].
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4.1.2 Efficient Algorithm for Determining M̂RSNS

Using Lemmas 1 through 8 in Section 4.1.1, the efficient algorithm for computing M̂RSNS fol-
lows the steps below [68]

S1. Define N as the number of coprime moduli (mi)1≤i≤N , M = ∏N
i=1 mi, and fundamental

period of the RSNS, Pf = 2MN.
S2. Compute the upper bound BM̂RSNS

for the dynamic range, Equation (4.6) of Theorem 7, or
Equation (4.18) of Lemma 8, if N = 3.

S3. Compute the number of ambiguity cases for the particular RSNS using Table 3.6 and the
limits imposed by Lemma 1. Compute the minimal-pair distance for all ambiguity pair
cases using multiplication of corresponding entries in the matrix of size N×2N , which is
the matrix containing as columns all of the N subcases of the 2N distinct cases of repeating
ambiguity pairs, and eliminate all ambiguity pair cases that have a length greater than the
dynamic range upper bound (step S2).

S4. Compute the remaining minimal pair ambiguity locations (h1,h2) using Table 3.6 and
Lemmas 2 and 5.

S5. Sort the matrix of minimal pairs (h1,h2) such that h2 is monotonically increasing. Vector
subtract the start positions of consecutive minimal pairs (h1 (p)−h1 (p+1)) and remove
all minimal pairs where the result is negative. The remaining minimal pairs are the only
consecutive minimal pairs.

S6. Compute the vector of distances between endpoints of consecutive minimal pairs (h2 (p+1)−
h1 (p)−1). The dynamic range M̂RSNS is the largest value in the resulting vector.

As an example, consider the RSNS from Table 3.3 where N = 3, mi = {3,4,5}. Table 3.6
provides the general N−sequence ambiguity expressions and Table I of reference [8] provides
the general ambiguity pair equations for the N = 3 case.

S1. Define N = 3, M = ∏N
i=1 mi = 60, and Pf = 360.

S2. Compute the dynamic range upper bound by using Theorem 7 (in which case, d6
√

120e−
1 = d65.7267e−1 = 65), or (since N = 3) Lemma 8 (in which case, 3(3 ·4+2 ·5)−1 =

65).
S3. Table 4.2 shows all possible ambiguity cases (using Table 3.6, or Table I in [8]) and

points out (above the double line) the rows that have ambiguity pairs with a length (min
k) greater than BM̂RSNS

= 65, which can be ignored in the computation of M̂RSNS.
The base cases (all cases ending in zero in Table 4.2) do not have shifts applied to the COA
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Table 4.2: Calculation of ambiguity locations for all ambiguity cases for a three sequence robust
symmetrical number system with moduli mi = {3,4,5} and a ∈ Z, from [68]

Case Ambiguities occur at
min k

Label h and h+ k, where h is

Case 010 Any position 360

Case 110 hCase 110 = a ·9−60
120Case 111 hCase 111 = a ·9−59

Case 112 hCase 112 = a ·9−58

Case 120 hCase 120 = a ·12−45
90Case 121 hCase 121 = a ·12−44

Case 122 hCase 122 = a ·12−46

Case 130 hCase 130 = a ·15−36
72Case 131 hCase 131 = a ·15−38

Case 132 hCase 132 = a ·15−37

Case 210 hCase 210 = a ·36−15
30Case 211 hCase 211 = a ·36+hs1−15

Case 212 hCase 212 = a ·36+hs2−15

Case 220 hCase 220 = a ·45−12
24Case 221 hCase 221 = a ·45+hs1−12

Case 222 hCase 222 = a ·45+hs2−12

Case 230 hCase 230 = a ·60−9
18Case 231 hCase 231 = a ·60+hs1−9

Case 232 hCase 232 = a ·60+hs2−9

Case 310 hCase 310 = a ·180−3
6Case 311 hCase 311 = a ·180+hs1−3

Case 312 hCase 312 = a ·180+hs2−3

(i.e., hs0 = 0). Using the procedure described in [8], the shifts, hs1 and hs2 in Table 4.2, are
computed as the least positive solutions to the following two sets of congruence equations
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(hs1 = 73, hs2 = 119):

hs1−1
3
≡ 0 (mod 3)

hs1−1
3
≡ 0 (mod 4)

hs1 +2
3
≡ 0 (mod 5)

hs2−2
3
≡ 0 (mod 3)

hs2 +1
3
≡ 0 (mod 4)

hs2 +1
3
≡ 0 (mod 5).

(4.20)

S4. Minimal pair ambiguity locations (h1,h2) are computed using Table 4.2 for h = −3 to
h = 183. All minimal pairs are provided in Table 4.3.

S5. The consecutive minimal pairs are shown in Table 4.3.

Table 4.3: Robust symmetrical number system e�cient search algorithm example - determination of
all consecutive minimal pairs for N = 3 and mi = {3,4,5}. Consecutive minimal pairs are shaded, the

minimal consecutive minimal pairs used to determine M̂RSNS is in bold font. From [68].

h1 COA h2 h1 COA h2

−3 0 3 68 83 98

−14 1 16 78 90 102
−4 11 26 93 108 123

4 13 22 94 109 124

16 28 40 106 118 130

17 29 41 116 119 122
21 36 51 111 120 129

22 37 52 124 133 142

33 45 57 123 135 147

32 47 62 129 144 159

50 59 68 130 145 160

51 60 69 140 155 170

57 72 87 151 163 175

70 73 76 152 164 176

62 74 86 170 179 188

177 180 183

S6. The consecutive minimal pairs that have the largest distance between them are displayed
in bold font with a shaded background in Table 4.3. The result is M̂RSNS = 43 starting at
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h = 79, and ending at h = 121, which agrees with the results in [8], [62].

4.2 Efficient Algorithm Complexity Analysis
In this section, the complexity of the computation of the upper bound, Equation (4.3), is com-
puted, and the efficiency of the efficient algorithm described in Section 4.1.2 is compared to the
naïve search algorithm of [56]. The “prime” big-oh notation O′(·) is used for functions in both
M,N (to see the dependence on N), and the big-oh notation O(·) is used for functions in M,
which is the relevant parameter (the O-constant will be dependent on N). For every 0≤ k ≤ N,
and every subset I of cardinality k, k−1 multiplications are performed for the first term in the
minimum computation of Equation (4.3), plus, a division and a doubling for the second term
(since 2 ∏

j∈Ī
m j = 2M/∏

i∈I
mi reusing the previous computation). Including the sorting for a set of

cardinality 2N with complexity O(N2N), the complexity for the bound computation of Lemma 6
is

O

(
N2N +N +

N

∑
k=0

k
(

N
k

)
2k

)

= O
(
N2N +2N3N−1)

= O
(
N3N) ,

(4.21)

using the identity ∑n
k=0 k

(n
k

)
zk = nz(z+ 1)n−1 [70]. Applying Equation (4.6) significantly re-

duces the above complexity to O(1), as a function of M (at the expense of possibly increasing
the upper bound) [68]. The M̂RSNS computation process described in Section 4.1.2 was imple-
mented using MATLAB.

A search of current research did not reveal any existing efficient computational algorithms for
finding and comparing all pairs of N× 1 vectors in an N×Pf vector space, except for a naïve
search algorithm used in [54]. The naïve search algorithm starts by creating an N×Pf matrix
with each of the columns consisting of the integer values within each RSNS modulus sequence,
as shown in Table 3.3. A double nested for–loop then determines the beginning position of
each ambiguity, h1, which are then sorted. A second double nested for–loop is then used to
determine the end position, h2, of each ambiguity where no other ambiguities are enclosed. The
maximum length is then calculated and is M̂RSNS, with the matrix index corresponding to the
correct beginning and end positions in the sequence.

The time complexities (arithmetical operations, and comparisons) of both algorithms in the
modulus M (assuming N fixed) are compared. The naïve approach uses a matrix of size N×
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(2NM) and for each column, it checks for the first match (ambiguity) in the remaining columns
of the matrix, so it uses N comparisons (for each components of every vector) plus an addition
for the range counter. Therefore, the worst case complexity of finding ambiguities and the
distance between them would be

�
Pf−1

∑
h=0

N(Pf −h) = NP2
f −N

Pf (Pf −1)
2

(4.22)

=
NPf (Pf +1)

2
= M(2MN +1)N2 = O′(M2N3), (4.23)

(since the RSNS fundamental period is Pf = 2NM). Then, the obtained list of size� Pf = 2NM

is sorted, which can be done in O′(MN(logM+ logN)), which brings the total time complexity
for the dynamic range computation of [68]

Naive Time Complexity = O′(M2N3) = O(M2). (4.24)

Now, the time complexity of the efficient algorithm of Section 4.1.2 is examined. The first
step is the same for both and its complexity is disregarded (as it is quite low, that is, O′(N),
compared to the other steps’ complexities). The second step can be done in O(1) using Theo-
rem 7, Lemma 8. The third step uses a sorted bin of size N×2N and performs O′(N22N) addi-
tions/multiplications on rows, and O′(N22N) additions/multiplications on columns (see also [8]
for further details on this step). The sorting of Step 3 is done in O′(N2N) operations. Step 4 as
well as Step 6 need O′(2N) operations, and Step 5 needs O′(N2N), for a total worst case time
complexity of [68]

Improved Time Complexity = O′(N22N) = O(1). (4.25)

The main advantage of the efficient algorithm is that it removes the apparent dependence on the
size of the moduli in the number of operations needed to compute M̂RSNS [68].

Figure 4.1 shows a log–log plot of M̂RSNS versus computation time for the two algorithms us-
ing hundreds of N−channel moduli sets. Each “+” represents the M̂RSNS obtained using the
algorithm presented in this paper, and has a corresponding “◦” on the same horizontal axis (up
to M̂RSNS ≈ 109), which is the M̂RSNS computed using the naïve search algorithm. The results
are displayed where the two computation methods produced the same results for M̂RSNS (up to
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Figure 4.1: Comparison of e�cient and naïve algorithm run time. From [56].

104 s). For example, with N = 4 moduli with M̂RSNS = 2×104, the naïve algorithm takes 300 s
to produce the answer, while it only takes the efficient algorithm described above 0.02 s.

4.3 Additional Closed-Form Expressions for the Dynamic Range
of the Robust Symmetrical Number System

In this section, closed-form expressions for M̂RSNS are developed for additional families of
moduli sets for N = 3 and N = 4 RSNS sequences to extend the solutions presented in [8].
The closed-form expressions were derived by generating different sets of coprime moduli and
determining M̂RSNS, the corresponding sequence’s beginning and ending positions as well as the
corresponding case numbers using the efficient algorithm described in Section 4.1.2. The data
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generated from the efficient algorithm were evaluated to determine the moduli sets that share
common start and stop case numbers. The values of M̂RSNS for these moduli sets were then
plotted versus the base modulus of the set of coprime moduli and curve fitting was conducted
to determine an analytical solution. The resulting analytical solution was then verified to satisfy
the solutions to the congruence equations shown in Table 3.6.

In the remainder of this section, additional closed-form expressions for M̂RSNS are presented for
an N = 3 and an N = 4 RSNS, greatly expanding the number of cases for which closed-form
expressions exist for M̂RSNS.

4.3.1 Three-Sequence Robust Symmetrical Number System

Three Sequential Odd Moduli

A set of three sequential, odd, coprime moduli were examined where mi = {m−1,m+1,m+3}
and m > 2 and even. The dynamic range M̂RSNS was determined using the efficient algorithm
described in [8], [68] and Section 4.1.2 to generate a data set. The data set was examined, and
it was determined that two distinct sets of case numbers were associated with the beginning and
ending positions of M̂RSNS. When m≡ 0 mod 4, the case number associated with the beginning
position (Start Case) of M̂RSNS is Case 211, and the case number associated with the ending
position (Stop Case) of M̂RSNS is Case 220. The values of m were plotted against the values of
M̂RSNS, and the data points were curve fitted to a quadratic polynomial using MATLAB’s curve
fitting toolbox, resulting in

M̂RSNS =
3
2

m2 +
15
2

m+7 (4.26)

where m ≡ 0 mod 4. A portion of the data that was curve fitted to derive Equation (4.26) is
presented in Table 4.4. The data generated from the algorithm and the closed-form expression
for M̂RSNS, Equation (4.26), are illustrated in Figure 4.2. The values of M̂RSNS derived from the
algorithm are equal to the values resulting from Equation (4.26).

To verify Equation (4.26), the value of M̂RSNS was determined from the results of Table 3.6. For
the Start Case,

h211 = a(3m1m2)+hs211−3m3. (4.27)
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The congruence equations generated from Equation (3.29),

hs211−1
3

≡ 0 mod m1

hs211−1
3

≡ 0 mod m2

, (4.28)

were solved using the CRT to obtain hs211 = 1. The value of a in Equation (4.27) was derived by
solving for a using the values of the beginning position, h1 + 1 and m. The results were curve
fitted, resulting in a = 0.75m+2. The expression for a was substituted into Equation (4.27) and

Table 4.4: Sample of data used in curve �tting for a three sequential odd coprime moduli, m≡ 0 mod 4.

m−1 m+1 m+3 h1 +1 Start Case h2−1 Stop Case M̂RSNS

7 9 11 1481 211 1643 220 163
11 13 15 4676 211 4988 220 313
15 17 19 10655 211 11165 220 511
19 21 23 20282 211 21038 220 757
23 25 27 34421 211 35471 220 1051
27 29 31 53936 211 55328 220 1393
31 33 35 79691 211 81473 220 1783
35 37 39 112550 211 114770 220 2221
39 41 43 153377 211 156083 220 2707
43 45 47 203036 211 206276 220 3241
47 49 51 262391 211 266213 220 3823
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Figure 4.2: Curve �tting results for the dynamic range of the robust symmetrical number system
M̂RSNS when mi = {m−1,m+1,m+3} where m≡ 0 mod 4.
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simplified to provide the following result,

h211 =
9
4

m3 +6m2− 21
4

m−14. (4.29)

For the Stop Case,
h220 = a(3m1m3)+3m2. (4.30)

By applying the same approach used in the previous cases examined, it was determined that
a = 0.75m+1 and

h220 =
9
4

m3 +
15
2

m2 +
9
4

m−6. (4.31)

By solving M̂RSNS = h220−h211−1, the desired result, Equation (4.26), was obtained verifying
the closed form expression for M̂RSNS.

When m≡ 2 mod 4, the Start Case is Case 211, and the Stop Case is Case 231. The data points
were curve fitted resulting in

M̂RSNS =
3
2

m2 +
15
2

m+5. (4.32)

A sample of the data used in the curve fitting process is listed in Table 4.5. In Figure 4.3, the
data and closed-form expression generated from curve fitting, Equation (4.32), are displayed.
To verify the Equation (4.32) it is derived from the applicable equations in Table 3.6. For the
Start Case, Case 231,

h231 = a(3m2m3)+hs231 +3m1. (4.33)

Table 4.5: Sample of data used in curve �tting for sequential odd coprime moduli, with m≡ 2 mod 4.

m−1 m+1 m+3 h1 +1 Start Case h2−1 Stop Case M̂RSNS

5 7 9 395 211 498 231 104
9 11 13 1745 211 1974 231 230

13 15 17 4631 211 5034 231 404
17 19 21 9629 211 10254 231 626
21 23 25 17315 211 18210 231 896
25 27 29 28265 211 29478 231 1214
29 31 33 43055 211 44634 231 1580
33 35 37 62261 211 64254 231 1994
37 39 41 86459 211 88914 231 2456
41 43 45 116225 211 119190 231 2966
45 47 49 152135 211 155658 231 3524
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Figure 4.3: Curve �tting results for the dynamic range of the robust symmetrical number system
M̂RSNS when mi = {m−1,m+1,m+3} and m≡ 2 mod 4.

The shift value hs231 is determined by solving the congruence equations generated from Equa-
tion (3.29),

hs231−1
3

≡ 0 mod m2

hs231 +2
3

≡ 0 mod m3

, (4.34)

using the CRT. The resulting expression for the shift value is

hs231 =
3
2

m2 +
15
2

m+7. (4.35)

The value of a in Equation (4.33) was determined to be a = 0.5m−1. These expressions were
then used to determine that

h231 =
3
2

m3 +
9
2

m2 +3m−5. (4.36)

By solving for M̂RSNS = h231−h211−1, the desired result is obtained verifying Equation (4.32).

Three Sequential Coprime Moduli (Even, Odd, Odd)
In [8], a closed-form expression for a three-sequence RSNS with coprime moduli of the form
{m−1,m,m+1}, Equation (3.22), was presented where m is even and m > 3. This section
examines the a set of sequential coprime moduli, mi = {m,m+1,m+3}, where m ≡ 2 mod 4
and m ≥ 14. For this choice of moduli, the Start Case was Case 230, and the Stop Case was
Case 231. A sample of the data obtained from using the algorithm of [8], [68] is displayed in
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Table 4.6: Sample of data used in curve �tting for sequential coprime moduli of form,
{m,m+1,m+3}, with m≡ 2 mod 4 and m≥ 14.

m m+1 m+3 h1 +1 Start Case h2−1 Stop Case M̂RSNS

14 15 17 4549 230 5037 231 489
16 17 19 922 230 1527 231 606
20 21 23 11533 230 12408 231 876
22 23 25 1660 230 2688 231 1029
26 27 29 23413 230 24783 231 1371
28 29 31 2614 230 4173 231 1560
32 33 35 41485 230 43458 231 1974
34 35 37 3784 230 5982 231 2199
38 39 41 67045 230 69729 231 2685
40 41 43 5170 230 8115 231 2946
44 45 47 101389 230 104892 231 3504
46 47 49 6772 230 10572 231 3801

Table 4.6. The data points were curve fitted to obtain the following expression for M̂RSNS,

M̂RSNS =
3
2

m2 +
27
2

m+6, (4.37)

that is plotted against the data points in Figure 4.4. Next, Equation (4.37) is derived from the
applicable equations of Table 3.6. The solution to M̂RSNS reduces to

M̂RSNS = hs231 +6m1−1 (4.38)

because h231 and h230 differ by the value of hs231 . By solving the congruence equations, Equa-
tion (4.34),

hs231 =
3
2

m2 +
15
2

m+7 (4.39)

is obtained. The desired result, Equation (4.37), is produced by substituting Equation (4.39)
into Equation (4.38) and simplifying the expression.

Three Sequential Coprime Moduli (Odd, Odd, Even)

Coprime moduli sets of the form, {m−3,m+1,m} when m is even and m 6= 6k where k =

1,2, . . . were examined. A sample of the data produced from the algorithm described in [8],
[68] is displayed in Table 4.7. The data was curve fitted resulting in the following closed-form
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Figure 4.4: Curve �tting results for the dynamic range of the robust symmetrical number system
M̂RSNS when mi = {m,m+1,m+3} where m≡ 2 mod 4 and m≥ 14.

expression,

M̂RSNS =
3
2

m2 +
3
2

m, (4.40)

which is plotted against the data generated from the algorithm of [8], [68] in Figure 4.5. The
Start Case is Case 211, and the Stop Case is Case 212. Due to the solutions for h211 and h212

listed in Table 3.6 differing by the shift values, hs211 and hs212 the solution for M̂RSNS is reduced
to

M̂RSNS = hs212 +6m−hs211−1. (4.41)

The shift value hs211 was determined by solving the congruence equations for hs211 in Equa-
tion (4.28) resulting in hs211 = 1. The congruence equations for hs212 are

hs212−2
3

≡ 0 mod m1

hs212 +1
3

≡ 0 mod m2

. (4.42)

The shift value hs212 is determined by using the CRT to solve Equation (4.42) resulting in

hs212 =
3
2

m2− 9
2

m+2. (4.43)

By substituting the values for hs211 and hs212 into Equation (4.41) and simplifying the expression,
Equation (4.40) is obtained verifying the closed-form expression for M̂RSNS.
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Figure 4.5: Curve �tting results for the dynamic range of the robust symmetrical number system
M̂RSNS when mi = {m−3,m−1,m} where m 6= 0 mod 6 and m is even.

Three Odd Coprime Moduli, Every Other Odd Number

Three coprime odd moduli of the form mi = {m,m+4,m+8} were examined. By examining
the data in Table 4.8, four separate Start and Stop Case combinations can be seen. The data was
curve fitted for each Start and Stop Case combination which produced the following closed-

Table 4.7: Sample of data used in curve �tting for sequential coprime moduli of form,
{m−3,m−1,m}, with m 6≡ 0 mod 6.

m−3 m−1 m h1 +1 Start Case h2−1 Stop Case M̂RSNS

7 9 10 1673 211 1837 212 165
11 13 14 3392 211 3706 212 315
13 15 16 8144 211 8551 212 408
17 19 20 10601 211 11230 212 630
19 21 22 22679 211 23437 212 759
23 25 26 24074 211 25126 212 1053
25 27 28 48518 211 49735 212 1218
29 31 32 45755 211 47338 212 1584
31 33 34 88901 211 90685 212 1785
35 37 38 77588 211 79810 212 2223
37 39 40 147068 211 149527 212 2460
41 43 44 121517 211 124486 212 2970
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Table 4.8: Sample of data used in curve �tting for sequential coprime moduli of form,
{m,m+4,m+8}, with m odd and m≥ 7.

m m+4 m+8 h1 +1 Start Case h2−1 Stop Case M̂RSNS

7 11 15 714 212 968 210 255
9 13 17 1355 211 1726 212 372

11 15 19 5599 220 5996 210 398
13 17 21 8558 211 9059 220 502
15 19 23 4434 212 5198 210 765
17 21 25 6353 211 7318 212 966
19 23 27 21478 220 22367 210 890
21 25 29 28265 211 29306 220 1042
23 27 31 13434 212 14996 210 1563
25 29 33 17303 211 19150 212 1848
27 31 35 53773 220 55346 210 1574
29 33 37 65924 211 67697 220 1774
31 35 39 30018 212 32666 210 2649
33 37 41 36509 211 39526 212 3018
35 39 43 108244 220 110693 210 2450

form expressions,

M̂RSNS =





9
4m2 + 63

4 m+48, m≡ 1 mod 8
3
2m2 + 33

2 m+35, m≡ 3 mod 8
3
2m2 + 33

2 m+34, m≡ 5 mod 8
9
4m2 + 57

4 m+45, m≡ 7 mod 8

. (4.44)

The data points resulting from the algorithm are plotted along with the curve fit solutions in
Figure 4.6 through Figure 4.9. For the first set of data, m≡ 1 mod 8, the Start Case is Case 211
and the Stop Case is Case 212. From Table 3.6, the solution to the congruence equations are

h211 = a13m1m2 +hs211−3m3 (4.45)

h212 = a23m1m2 +hs212 +3m3 . (4.46)

The shift values are determined to be
hs211 = 1 (4.47)
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Figure 4.6: Curve �tting results for the dynamic range of the robust symmetrical number system
M̂RSNS when mi = {m,m+4,m+8} where m≡ 1 mod 8 and m≥ 7.

and
hs212 = 2− 9

4
m− 3

4
m2. (4.48)

The values of the a1 and a2 were determined to be

a1 =
1
4

m+
7
4

(4.49)

and
a2 =

1
4

m+
11
4
. (4.50)

The expressions of Equation (4.47) through Equation (4.50) are substituted into Equation (4.45)
and Equation (4.46) resulting in

h211 =
3
4

m3 +
33
4

m2 +18m−23 (4.51)

and
h212 =

3
4

m3 +
21
2

m2 +
135
4

m+26. (4.52)

From Equation (4.51) and Equation (4.52), the expression for M̂RSNS = h212− h211− 1 results
in the corresponding expression in Equation (4.44) verifying the result obtained through curve
fitting.

When m≡ 3 mod 8, the Start Case is Case 220 and the Stop Case is Case 210. The solutions to

74



Figure 4.7: Curve �tting results for the dynamic range of the robust symmetrical number system
M̂RSNS when mi = {m,m+4,m+8} where m≡ 3 mod 8 and m≥ 7.

the congruence equations in Table 3.6 are

h210 = a23m1m2 +3m3 (4.53)

h220 = a13m1m3−3m2. (4.54)

From the values of the beginning and ending positions and curve fitting,

a1 =
5
8

m+
17
8
, (4.55)

and
a2 =

5
8

m+
41
8
. (4.56)

The corresponding closed-form expression for M̂RSNS in Equation (4.44) is obtained by substi-
tuting (4.55) and (4.56) into (4.53) and (4.54) and solving M̂RSNS = h210−h220−1.

When m≡ 5 mod 8, the Start Case is Case 211 and the Stop Case is Case 220. The solution to
the congruence equations in Table 3.6 are

h211 = a13m1m2 +hs211−3m3 (4.57)

and
h220 = a23m1m3 +3m3. (4.58)
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Figure 4.8: Curve �tting results for the dynamic range of the robust symmetrical number system
M̂RSNS when mi = {m,m+4,m+8} where m≡ 5 mod 8 and m≥ 7.

By solving the congruence equations based on the shift matrix, Equation (3.29), hs211 = 1. Using
the values of the beginning and ending positions of the sequence comprising M̂RSNS,

a1 =
5
8

m+
39
8

(4.59)

and
a2 =

5
8

m+
23
8
. (4.60)

After substituting Equation (4.59) and Equation (4.60) into Equation (4.57) and Equation (4.58)
and solving M̂RSNS = h220− h211− 1, the corresponding expression in Equation (4.44) is ob-
tained.

When m≡ 7 mod 8, the Start Case is Case 212 and the Stop Case is Case 210. The solutions to
the congruence equations from Table 3.6 are

h210 = a1m1m2 +3m3 (4.61)

and
h212 = a2m1m2 +hs212−3m3. (4.62)
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Figure 4.9: Curve �tting results for the dynamic range of the robust symmetrical number system
M̂RSNS when the moduli mi = {m,m+4,m+8} where m≡ 7 mod 8 and m≥ 7.

The congruence equations based on the shift matrix, Equation (3.29) are solved resulting in

hs212 =
3
4

m2 +
15
2

m+2. (4.63)

The expressions for a1 and a2 are determined to be

a1 =
1
4

m+
9
4

(4.64)

and
a2 =

1
4

m+
5
4
. (4.65)

Equation (4.64) and Equation (4.65) are substituted into Equation (4.61) and Equation (4.62),
and M̂RSNS = h210 − h212 − 1 is solved resulting in the corresponding expression in Equa-
tion (4.44) verifying the curve fitting results.

The new closed-form expressions for M̂RSNS when N = 3 are summarized in Table 4.9.

4.3.2 Additional Closed-Form Solutions for a Four-sequence RSNS
In this section, several four-sequence RSNS moduli sets are examined and closed-form expres-
sions to M̂RSNS are derived based on the results of curve fitting using MATLAB’s curve fitting
toolbox. The closed-form expressions are verified by deriving the same expressions for M̂RSNS

using the equations in Table 3.6.
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One Even and Three Odd Sequential Coprime Moduli (Even, Odd, Odd, Odd)

A set of coprime moduli was examined and the moduli were sequential coprime numbers of the
format mi = {m−1,m,m+2,m+4} where m is an odd number. It was determined that when
m≡ 3 mod 6 or m≡ 5 mod 6 with m≥ 15 and m 6= {29,33} that the Start Case was Case 260
and the Stop Case was Case 261. The data points obtained from applying the efficient algorithm
described in Section 4.1.2 were curve fitted resulting in

M̂RSNS = 10m2 +6m+20. (4.66)

A sample of the data used in curve fitting is listed in Table 4.10, and the data and the closed-form
expression for M̂RSNS, Equation (4.66), are displayed in Figure 4.10.

The closed-form expression in Equation (4.66) can be determined from the solutions to the
congruence equations listed in Table 3.6. The solution for the Start Case is

h260 = a(4m3m4)−4(m1m2), (4.67)

and for the Stop Case, the solution to the congruence equations is

h261 = a(4m3m4)+hs261 +4(m1m2). (4.68)

Table 4.9: New closed-form expressions for three sequence robust symmetrical number system (RSNS)
dynamic range. From [68].

mi M̂RSNS m

{m−1,m+1,m+3}
3
2m2 + 15

2 m+7 m≡ 0 mod 4
3
2m2 + 15

2 m+5 m≡ 2 mod 4

{m,m+1,m+3} 3
2m2 + 27

2 m+6 m≡ 2 mod 4 and m≥ 14

{m−3,m+1,m} 3
2m2 + 3

2m m is even and m 6= 6k where k = 1,2, . . .

{m,m+4,m+8}

9
4m2 + 63

4 m+48 m≡ 1 mod 8
3
2m2 + 33

2 m+35 m≡ 3 mod 8
3
2m2 + 33

2 m+34 m≡ 5 mod 8
9
4m2 + 57

4 m+45 m≡ 7 mod 8
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From Equation (4.67) and Equation (4.68),

M̂RSNS = hs261 +8m1m2−1. (4.69)

The shift value hs261 is obtained by solving the congruence equations for hs261 ,

hs261−1
4

≡ 0 mod m3

hs261 +3
4

≡ 0 mod m4

, (4.70)

Table 4.10: Sample of data used in curve �tting for sequential coprime moduli of form,
{m,m+1,m+2,m+4}, with m≡ 3 mod 6 or m≡ 5 mod 6 and m≥ 15.

m−1 m m+2 m+4 h1 +1 Start Case h2−1 Stop Case M̂RSNS

14 15 17 19 49549 260 51908 261 2360
16 17 19 21 93077 260 96088 261 3012
22 23 25 27 43877 260 49324 261 5448
26 27 29 31 212953 260 220424 261 7472
34 35 37 39 1455557 260 1468036 261 12480
38 39 41 43 4457989 260 4473452 261 15464
44 45 47 49 8540817 260 8561356 261 20540
46 47 49 51 3389993 260 3412384 261 22392
52 53 55 57 6384377 260 6412804 261 28428
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Figure 4.10: Curve �tting results plotted against algorithm results for the dynamic range of the robust
symmetrical number system M̂RSNS when the moduli mi = {m−1,m,m+2,m+4} where m≡ 3 mod 6
or m≡ 5 mod 6 and m≥ 15.
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using the CRT, which results in

hs261 = 2m2 +14m+21. (4.71)

Equation (4.71) is substituted into Equation (4.69) and the expression is simplified to obtain the
closed-form expression for M̂RSNS, Equation (4.66).

One Even and Three Odd Sequential Coprime Moduli (Odd, Even, Odd, Odd)

The case where the four sequential coprime numbers are used as the moduli set of the form
mi = {m,m+1,m+2,m+4} where m≡ 1 mod 6 or m≡ 3 mod 6 and m≥ 15 is examined. A
sample of the data used in the curve fitting program is shown in Table 4.11. The data and the
closed-form expression generated by curve fitting the data are displayed in Figure 4.11. The
Start Case is Case 260, and the Stop Case is Case 261. Curve fitting the data in Table 4.11
results in a quadratic expression for M̂RSNS,

M̂RSNS = 10m2 +22m+20. (4.72)

By applying the solutions to the congruence equations in Table 3.6, the values of h260 and h261

Table 4.11: Sample of data used in curve �tting for sequential coprime moduli of form,
{m,m+1,m+2,m+4}, with m≡ 1 mod 6 or m≡ 3 mod 6 and m≥ 15.

m m+1 m+2 m+4 h1 +1 Start Case h2−1 Stop Case M̂RSNS

15 16 17 19 41677 260 44276 261 2600
19 20 21 23 479549 260 483596 261 4048
21 22 23 25 407553 260 412444 261 4892
25 26 27 29 113285 260 120104 261 6820
27 28 29 31 7765 260 15668 261 7904
31 32 33 35 656693 260 667004 261 10312
33 34 35 37 529053 260 540688 261 11636
37 38 39 41 346157 260 360680 261 14524
39 40 41 43 1157341 260 1173428 261 16088
43 44 45 47 10220573 260 10240028 261 19456
45 46 47 49 6827025 260 6848284 261 21260
49 50 51 53 779477 260 804584 261 25108
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can be derived. The solution for the Start Case is

h260 = a(4m3m4)−4(m1m2), (4.73)

and for the Stop Case, the solution to the congruence equations is

h261 = a(4m3m4)+hs261 +4(m1m2). (4.74)

Based on Equation (4.73) and Equation (4.74),

M̂RSNS = hs261 +8m2 +8m−1. (4.75)

The congruence equations used to solve for hs261 are

hs261−1
4

≡ 0 mod m3

hs261 +3
4

≡ 0 mod m4

. (4.76)

The CRT is applied to Equation (4.76) to solve for hs261 and results in

hs261 = 2m2 +14m+21. (4.77)
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Figure 4.11: Curve �tting results plotted against algorithm results for the dynamic range of the robust
symmetrical number system M̂RSNS when the moduli mi = {m,m+1,m+2,m+4} where m≡ 1 mod 6
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Table 4.12: Sample of data used in curve �tting for sequential coprime moduli of form,
{m,m+1,m+2,m+4}, with m≡ 1 mod 6 or m≡ 3 mod 6 and m≥ 15.

m m+2 m+3 m+4 h1 +1 Start Case h2−1 Stop Case M̂RSNS

25 27 28 29 661185 250 668178 233 6994
29 31 32 33 3736377 250 3745650 233 9274
31 33 34 35 1968525 250 1979058 233 10534
35 37 38 39 880759 252 894050 233 13292
37 39 40 41 2949033 250 2963826 233 14794
41 43 44 45 13800945 250 13818978 233 18034
43 45 46 47 7398911 252 7418682 233 19772
47 49 50 51 14499895 252 14523386 233 23492
49 51 52 53 8725905 250 8751378 233 25474
53 55 56 57 36880809 250 36910482 233 29674
55 57 58 59 35117255 252 35149146 233 31892
59 61 62 63 6679999 252 6716570 233 36572
61 63 64 65 20459385 250 20498418 233 39034
65 67 68 69 81125217 250 81169410 233 44194

Equation (4.77) is substituted into Equation (4.75) resulting in Equation (4.72).

One Even and Three Odd Sequential Coprime Moduli (Odd, Odd, Even, Odd)
For the next case examined, the coprime moduli are in the form, {m,m+2,m+3,m+4} and m

is an odd number. A sample of the data examined is shown in Table 4.12. There are two distinct
Start Cases, Case 250 and Case 252 for m ≥ 25. The Stop Case is Case 233 for m ≥ 25. For
moduli sets where the Start Case is Case 250, m= {25+12k,29+12k,31}where k= 0,1,2, · · ·,
the data points generated from the efficient algorithm described in Section 4.1.2 were curve
fitted resulting in

M̂RSNS = 10m2 +30m−6. (4.78)

the data generated by the algorithm and the resulting quadratic function derived from curve
fitting the data are displayed in Figure 4.12.

To verify Equation (4.78), it is derived from the solutions of the congruence equations listed in
Table 3.6. From Table 3.6,

h250 = a14m2m4−4m1m3, (4.79)

and
h233 = a24m2m3 +hs233 +4m1m4. (4.80)
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Figure 4.12: Curve �tting results plotted against algorithm results for the dynamic range of the
robust symmetrical number system M̂RSNS when the moduli mi = {m,m+2,m+3,m+4} where m =
{25+12k,29+12k,31} where k = 0,1,2, · · ·.

To solve for h250, the beginning position was used to solve Equation (4.79) for a1 where

a1 =
h1 +4m(m+3)
4(m+2)(m+4)

(4.81)

and the data points were curve fitted. It was determined that

a1 =





1
3m2 + 1

6m− 1
2 , m = 25+12k

m2 + 5
2m+ 1

2 , m = 29+12k
(4.82)

resulting in

h250 =





4
3m4 + 26

3 m3 + 26
3 m2 + 34

3 m−21, m = 25+12k

4m4 +34m3 +90m2 +80m+16, m = 29+12k.
(4.83)

To solve for h233, the shift value hs233 was determined from the congruence equations,

hs233 +1
4

≡ 0 mod m2

hs233 +1
4

≡ 0 mod m3,

(4.84)

using the CRT resulting in hs233 = −1. The expression for a2 was then determined from the
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ending position by solving

a2 =
h2 +1+4m(m+4)

4(m+2)(m+3)
. (4.85)

It was determined that

a2 =





1
3m2 + 1

2m− 5
6 , m = 25+12k

m2 + 7
2m+ 1

2 , m = 29+12k
, (4.86)

resulting in

h233 =





4
3m4 + 26

3 m3 + 56
3 m2 + 34

3 −21, m = 25+12k

4m4 +34m3 +100m2 +110m+11, m = 29+12k
, (4.87)

where k = 0,1,2, · · ·. Equation (4.83) and Equation (4.87) were substituted into

M̂RSNS = h233−h250−1, (4.88)

and the resulting expression was simplified to obtain Equation (4.78).

For the other Start Case, Case 252, the data from the algorithm were curve fitted resulting in

M̂RSNS = 10m2 +30m−8, (4.89)

where m= {43+12k,47+12k} and k = 0,1,2, · · ·. The data points generated from the efficient
algorithm and Equation (4.89) are plotted in Figure 4.13. To solve for h252, a similar approach
was taken as for the previous sets of values. The solution to the congruence equations for
Case 252 is

h252 = a14m2m4 +hs252−4m1m3. (4.90)

The shift value, hs252 , is determined by solving the congruence equations,

hs252−2
4

≡ 0 mod m2

hs252 +2
4

≡ 0 mod m4

. (4.91)

The CRT is applied to Equation (4.91) to obtain

hs252 = 2m2 +14m+22. (4.92)

By curve fitting the solutions for a1 derived from the values of h1, the following expressions for
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Figure 4.13: Curve �tting results plotted against algorithm results for the dynamic range of the
robust symmetrical number system M̂RSNS when the moduli mi = {m,m+2,m+3,m+4} where m =
{25+12k,29+12k,31} where k = 0,1,2, · · ·.

a1 were determined

a1 =





11
24m2 + 2

3m− 9
8 , m = 43+24k

5
8m2 + 3

2m− 1
8 , m = 47+24k

5
6m2 + 5

3m− 3
2 , m = 55+24k

1
8m2− 1

8 , m = 59+12k.

(4.93)

Equation (4.93) is substituted into Equation (4.90) and the resulting expression is simplified to
obtain

h252 =





11
6 m4 + 41

3 m3 + 145
6 m2− 11

3 m−14, m = 43+24k
5
2m4 +21m3 + 107

2 m2 +47m+18, m = 47+24k
10
3 m4 + 80

3 m3 + 176
3 m2 + 58

3 m−26, m = 55+24k
1
2m4 +3m3 + 3

2m2−m+18, m = 59+12k

(4.94)

where k = 0,1,2, · · ·.

For the Stop Case, Case 233, the solution to the congruence equation for h233 is Equation (4.80)
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where hs233 =−1. The same procedure is used as in the previous cases to solve for a2 producing

a2 =





11
24m2 + 9

8m− 5
6 , m = 43+24k

5
8m2 + 17

8 m+ 1
2 , m = 47+24k

5
6m2 + 5

denm− 4
3 , m = 55+24k

1
8m2 + 1

8m+ 1
2 , m = 59+12k

. (4.95)

Equation (4.95) is substituted into Equation (4.80) to obtain

h233 =





11
6 m4 + 41

3 m3 + 205
6 m2 + 79

3 m−21, m = 43+24k
5
2m4 +21m3 + 127

2 m2 +77m+18, m = 47+24k
10
3 m4 + 80

3 m3 + 206
3 m2 + 148

3 m−33, m = 55+24k
1
2m4 +3m3 + 23

2 m2−29m+11, m = 59+12k

. (4.96)

Equation (4.96) and Equation (4.94) are substituted into

M̂RSNS = h233−h252−1 (4.97)

to obtain Equation (4.89) verifying the results produced from curve fitting.

One Even and Three Odd Sequential Coprime Moduli (Odd, Odd, Odd, Even)

The next case examined was the case where four sequential coprime moduli were used of the
form {m,m+2,m+4,m+5} where m≥ 39, gcd(m,5) = 1, and m is odd. A sample of the data
used in curve fitting is illustrated in Table 4.13, and the curve fitting results are displayed in
Figure 4.14. Curve fitting resulted in

M̂RSNS = 10m2 +54m+20. (4.98)

For the set of moduli examined, the Start Case is Case 231, and the Stop Case is Case 232.
From Table 3.6,

M̂RSNS = hs232 +4m1m4−hs231−1. (4.99)
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Table 4.13: Sample of data used in curve �tting for sequential coprime moduli of form,
{m,m+2,m+4,m+5}, with m odd, m≥ 39, and gcd(m,5) = 1.

m m+2 m+4 m+5 h1 +1 Start Case h2−1 Stop Case M̂RSNS

39 41 43 44 2637638 231 2654973 232 17336
41 43 45 46 9234018 231 9253061 232 19044
47 49 51 52 1509618 231 1534265 232 24648
51 53 55 56 10844038 231 10872821 232 28784
53 55 57 58 5053866 231 5084837 232 30972
57 59 61 62 5010070 231 5045657 232 35588
59 61 63 64 2813346 231 2851361 232 38016
63 65 67 68 31530486 231 31573597 232 43112
69 71 73 74 20898166 231 20949521 232 51356
71 73 75 76 18045918 231 18100181 232 54264
77 79 81 82 50219694 231 50283161 232 63468
81 83 85 86 35416458 231 35486461 232 70004
83 85 87 88 57030606 231 57103997 232 73392

The shift values are determined by solving the congruence equations based on Equation (3.28).
The congruence equations for solving hs231 are

hs231−1
4

≡ 0 mod m2

hs231−1
4

≡ 0 mod m3

, (4.100)

and the congruence equations for hs232 are

hs232−2
4

≡ 0 mod m2

hs232 +2
4

≡ 0 mod m3

. (4.101)

Equation (4.100) and Equation (4.101) are solved using the CRT and result in

hs231 = 1 and (4.102)

hs232 = 2m2 +14m+22. (4.103)

Equation (4.98) is obtained by substituting Equation (4.102) and Equation (4.103) into Equa-
tion (4.99) and simplifying the resulting expression.
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Figure 4.14: Curve �tting results plotted against algorithm results for the dynamic range of the robust
symmetrical number system M̂RSNS when the moduli mi = {m,m+2,m+4,m+5} where with m is
odd, m≥ 39, and gcd(m,5) = 1.

Four Sequential Odd Coprime Moduli
A four-sequence RSNS is examined with coprime odd moduli, mi = {m,m+2,m+4,m+6}.
It was determined when m≥ 13 and gcd(m,3) = 1 that the Start Case is Case 260 and the Stop
Case is Case 261 as illustrated in Table 4.14. The data generated using the efficient algorithm
described in Section 4.1.2 were curve fit and resulted in

M̂RSNS = 10m2 +38m+56. (4.104)

The data and Equation (4.104) are plotted in Figure 4.15.

To verify that the expression, M̂RSNS is derived from the solutions to the congruence equations
in Table 3.6. From these solutions,

M̂RSNS = hs261 +8m1m2−1. (4.105)

The shift value hs261 is determined by solving the congruence equations, Equation (4.70), using
the CRT to obtain

hs261 = 2m2 +22m+57. (4.106)

Equation (4.106) is substituted into Equation (4.105) resulting in Equation (4.104).

The new closed-form expressions for M̂RSNS for N = 4 are summarized in Table 4.15.
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Table 4.14: Sample of data used in curve �tting for sequential coprime moduli odd moduli of form,
mi = {m,m+2,m+4,m+6}, with m odd, m≥ 13, and gcd(m,3) = 1.

m m+2 m+4 m+6 h1 +1 Start Case h2−1 Stop Case M̂RSNS

13 15 17 19 61237 260 63476 261 2240
17 19 21 23 2573 260 6164 261 3592
19 21 23 25 456105 260 460492 261 4388
23 25 27 29 35285 260 41504 261 6220
25 27 29 31 69221 260 76476 261 7256
29 31 33 35 171965 260 181532 261 9568
31 33 35 37 249729 260 260572 261 10844
35 37 39 41 346601 260 360236 261 13636
37 39 41 43 2088673 260 2103824 261 15152
41 43 45 47 1490369 260 1508792 261 18424
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Figure 4.15: Curve �tting results plotted against algorithm results for M̂RSNS when the moduli mi =
{m,m+2,m+4,m+6} where with m is odd, m≥ 13, and gcd(m,3) = 1.

89



Table 4.15: New closed-form expressions for the dynamic range of four-sequence robust symmetrical
number systems, from [68].

mi M̂RSNS m

{m−1,m,m+2,m+4} 10m2 +6m+20 m≡ 3 mod 6 or m≡ 5 mod 6 with
m≥ 15 and m 6= {29,33}

{m,m+1,m+2,m+4} 10m2 +22m+20 m≡ 1 mod 6 or m≡ 3 mod 6 and
m≥ 15

{m,m+2,m+3,m+4} 10m2 +30m−6 m = {25+12k,29+12k,31} where
k = 0,1,2, · · ·,

10m2 +30m−8 m = {43+12k,47+12k} and
k = 0,1,2, · · ·

{m,m+2,m+4,m+5} 10m2 +54m+20 m≥ 39, gcd(m,5) = 1, and m is odd

{m,m+2,m+4,m+6} 10m2 +38m+56 m≥ 13 and gcd(m,3) = 1
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4.4 Concluding Remarks
This chapter presented an efficient algorithm for determining M̂RSNS with a significant reduction
in computational complexity compared to a naïve search algorithm. The efficient algorithm was
used to examine various combinations of moduli sets for N = 3 and N = 4 RSNS sequences and
to develop analytical closed-form expressions for M̂RSNS by identifying the moduli sets with the
same case numbers for the beginning and ending points of the RSNS sequences. The closed-
form analytical expressions were then proven using the solutions to the congruence equations
that identify the ambiguity locations, listed in Table 3.6. The new closed-form analytical ex-
pressions for M̂RSNS provide an expanded set of moduli sets for which a closed-form analytical
expression for M̂RSNS exist, allowing M̂RSNS to be easily calculated for a wide variety of moduli
sets.

The method for determining the new closed-form analytical expressions for M̂RSNS presented
in this chapter can be used to determine additional expressions for RSNS sequences with N >

4. As an example, for an N = 5 RSNS sequence consisting of four sequential odd and one
even coprime moduli of the form, {m,m+2,m+3,m+4,m+6} with m odd, there are several
different cases to examine that have the same Start and Stop Case Numbers. For the sequences
with a Start Case Number equal to 380 and a Stop Case Number equal to 313, when m =

109+72k and m = 133+72k for k = 0,1,2, . . . ,

M̂RSNS =
5
3

m3 +10m2 +
205
3

m+152. (4.107)

The data points produced from the efficient algorithm are plotted with the curve fit solution for
M̂RSNS in Figure 4.16. Equation (4.107) can be proven using the methods described in Sec-
tion 4.3.1 and Section 4.3.2. Determining additional sets of closed-form analytical expressions
for M̂RSNS leading to a general closed-form expression is one area of continuing research.

In the next chapter, RSNS preprocessing is used in a photonic DF linear antenna array. The
RSNS allows for a small baseline array while maintaining fine frequency resolution. The pho-
tonic implementation enables wide band DF using phase interferometry without the requirement
to down convert the SOI.
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Figure 4.16: Curve �tting results and algorithm results for M̂ when the moduli mi =
{m,m+2,m+3,m+4,m+6} when m = 109+72k and m = 133+72k and k = 0,1,2, . . .
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CHAPTER 5:

Photonic Direction Finding Array with Robust

Symmetrical Number System Preprocessing

Direction finding (DF) methods are used to measure the direction-of-arrival (DOA) θ of an in-
cident radio frequency (RF) wave and are also referred to as radio-location systems. Direction
finding systems estimate the geographical direction or true bearing of an emitter and have appli-
cations in navigation, targeting, law enforcement and wildlife management. Other applications
include electronic signal intelligence, electronic warfare (EW), signal identification, search and
rescue, propagation analysis, and ionospheric research. The DF processing may be accom-
plished by using a separate subsystem that is not involved in the signal acquisition and analysis
processing (tasked DF) or as part of the signal acquisition process. High performance DF arrays
are characterized by a high angular (spatial) resolution, a wide frequency BW, a wide field of
view (FOV), a minimum number of array elements, and a minimum baseline length.

Several techniques can be used to determine the DOA of a incident RF signal. They include
amplitude comparison [71], phase interferometry [72]–[74], combining amplitude comparison
and phase interferometry [75], and super-resolution techniques [76]–[79]. Each technique of-
fers specific advantages and disadvantages. For detecting a single signal, conventional DF
techniques typically involve a linear or circular interferometer to measure the incident wave’s
phase and/or amplitude at each antenna element. For multiple signals, super-resolution DF tech-
niques are often used. These techniques can be categorized as beam-forming super-resolution
techniques (maximum likelihood methods, adaptive angular response, thermal noise algorithm)
or eigenvalue-based super-resolution techniques(multiple signal classification (MUSIC), Root-
MUSIC, estimation of signal parameters via rotational invariance techniques (ESPRIT).

In EW systems, amplitude and phase measurement interferometer systems are typically the
methods of choice since they are easier to implement and have good resolution capabilities.
However, using these methods can result in ambiguities that must be resolved efficiently. When
multiple signals are present, amplitude and phase measurement systems can produce erroneous
results due to interference between the signals. This problem is often solved by channelizing
the receiver’s BW into channels with a narrow BW so that there is a high probability that only
one emitter is present in each channel. By comparison, super-resolution techniques are com-
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putationally complex, but can determine the DOA with a high degree of accuracy for multiple
signals. A disadvantage to super-resolution techniques is that errors can result due to an incor-
rect estimate of the model order (number of signals present) or inaccurate characterization of
antenna array response. In addition, element matching requirements are difficult to realize in
a cluttered environment, and multi-path effects can lead to poor DF results. Super-resolution
methods are also unattractive for RF DF with array antennas because each antenna requires
a matched receiver channel to support simultaneous sampling. Additionally, the matched re-
ceivers require calibration to achieve accurate results [80].

Wideband optical technology now plays a significant role in many DF and digital receiver ar-
chitectures. Especially important in DF applications is the use of the Mach-Zehnder modula-
tor (MZM) built using LiNbO3 technology. The use of the MZM for wideband fiber-optic DF
applications is described in [81] where it is used as an optical down conversion circuit at the an-
tenna and as a means to efficiently couple the local oscillator into the optical domain. Accuracy
of better than 0.1deg is achieved at 10 GHz with a BW capability of 2 - 18 GHz. In [82], optical
Bragg cells are explored for DF applications. A laser is split between two Bragg cells whose
outputs are Fourier transformed by a lens and detected by a channelized phase detector. In [83],
a photonic approach is used to measure the DOA for a RF signal. Two cascaded MZMs, biased
at the minimum transmission point, are used to modulate a continuous wave (CW) laser. Iden-
tical RF signals with a given phase shift are applied to the electrode of each MZM. The phase
difference between the signals is determined by measuring the optical signal’s power. In [84],
a technique for detecting the DOA of broadband microwave (MW) signals in phased-array an-
tennas is proposed. The technique is based upon a two-tap photonic transversal MW filter and
measuring the frequency of the notches produced over the broadband signal using a spectrum
analyzer.

In this chapter, a novel photonic, wideband, four-element, phase sampling, linear DF antenna
array using an RSNS preprocessing technique is presented. A dual electrode Mach-Zehnder
modulator (DE-MZM) is used to modulate the intensity of a CW laser to generate a signal that
is a function of the phase difference between the phase shifted signals applied to the electrodes
of the DE-MZM. The modulated optical signal is converted back to the electrical domain by a
photodetector (PD) and is passed through a direct current (DC) block leaving a sinusoidal signal
whose magnitude is dependent upon the phase difference ψi between the RF signals applied to
the DE-MZM electrodes. The magnitude of the signal in each channel is determined through
envelope detection, and the normalized envelope is applied to separate comparator networks to
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generate the RSNS symmetrical residues that are used in decoding the DOA.

Considering that the BW of a LiNbO3 DE-MZM is on the order of 40 GHz, the use of DE-MZMs
provides wideband DF capability without having to down convert a high frequency input signal
(e.g. 10 GHz pulsed radar signal) to an intermediate frequency. The use of photonics also allows
transfer of the signals to a central location for signal processing due to the reduced weight, low
loss, and immunity to EMI of fiber-optic cables compared to those of metallic waveguides and
RF cables [9], [85]. Additionally, narrow band signal processing techniques can be applied to
wideband RF signals in the optical region due to the optical carrier being in the THz range. The
application of RSNS preprocessing allows obtaining an unambiguous DOA with fine spatial
resolution while using a smaller array size than conventional linear arrays. Robust symmetrical
number system preprocessing decomposes the spatial filtering operation into a number of par-
allel suboperations (moduli) that are of smaller computational complexity [57]. The inherent
integer Gray code property of the RSNS can also be used for error detection and correction
when tracking the DOA of a moving target.

The remainder of this chapter is organized as follows. In Section 5.1, phase sampled DF con-
cepts are presented and the concept of using a DE-MZM in phase interferometry applications
is developed. Simulation and experimental results are also presented to demonstrate the con-
cept. In Section 5.2, the design of a four-element photonic DF array with RSNS preprocessing
is presented, and simulation results are provided in Section 5.3. Experimental results for the
RSNS based photonic DF array are provided in Section 5.4. In Section 5.5, simulations are
conducted to demonstrate the performance of the array when the signal environment consists of
multiple pulsed emitters. The final section provides concluding remarks and discusses potential
applications and future research areas.

5.1 Use of a Dual Electrode Mach Zehnder Modulator in
Phase Interferometry

For a two-element photonic DF linear array shown in Figure 5.1, the DOA of a RF emitter is
determined by detecting the phase difference between the narrow band signals received at a
reference antenna element and a measurement antenna element separated by a distance, d. The
phase angle ψ between the signals arriving at the two antennas is related to the DOA θ by

ψ =
2π
λ

d sinθ , (5.1)
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where λ is the wavelength of the incident RF wave.

If the signal at the reference antenna element is V1(t) = Acos(Ωt) and the signal at the mea-
surement antenna element is V2(t) = Acos(Ωt−ψ), θ is calculated by solving Equation (5.1)
for θ ,

θ = arcsin
(

ψλ
2πd

)
. (5.2)

To prevent ambiguous DOA results, d ≤ λ/2 for a FOV of 180deg. If the FOV is reduced, the
maximum distance between antenna elements can be increased by a scaling factor [57]

ξ =
1

sin(FOV/2)
. (5.3)

In Figure 5.1, the DC component of the PD output is blocked, and the magnitude of the al-
ternating current (AC) component is determined from the output of an envelope detector. The

MZM CW 
Laser PD DC 

BLK 

ENV 
DET 

1V

2V

outV

sind θ
θ

d

Electric Field 

Figure 5.1: Block diagram of a two-element photonic direction �nding linear array.
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normalized output voltage of the envelope detector Vout is demonstrated below to be a function
of the phase angle ψ .

The transmission factor T of a DE-MZM is a function of the difference between the voltages,
V1 and V2, applied to its electrodes and is expressed as

T =
1
2
·
[

1+ cos
(

π · V1−V2

Vπ
+ϕb

)]
, (5.4)

where
ϕb = 2π

∆nL

λ
+π

Vb

Vπ
(5.5)

is the phase bias, Vπ is the half-wave switching voltage of the DE-MZM, and ∆nL = n2L2−n1L1

is the path length mismatch between the two arms of the interferometer [86], [87]. If equal
amplitude phase shifted sinusoids, V1 = V cos(Ωt) and V2 = V cos(Ωt +ψ), are applied to the
electrodes of the DE-MZM, the difference term in Equation (5.4) is

V1−V2 = 2V sin(ψ/2)sin(Ωt +ψ/2) . (5.6)

As a result, Equation (5.4) can be recast as

(5.7)T =
1
2


1 + cos




2V sin ψ
2

Vπ
π sin

(
Ωt +

ψ
2

)

︸ ︷︷ ︸
x

+ ϕb︸︷︷︸
y





 .

Applying the identity [70],

cos(x+ y) = cosxcosy− sinxsiny, (5.8)

to Equation (5.7), the transmission factor can be expressed as

T =
1
2

[
1+ cosϕb cos

(
zsin

(
Ωt +

ψ
2

))
− sinϕb sin

(
zsin

(
Ωt +

ψ
2

))]
, (5.9)

where

z =
2V sin ψ

2
Vπ

π. (5.10)

The result in Equation (5.9) can be expressed as a summation of the harmonics of the input

97



signal by applying the identities [70],

cos(zsinθ) = J0(z)+2
∞

∑
1

J2k(z)cos(2kθ) (5.11)

and
sin(zsinθ) = 2

∞

∑
0

J2k+1(z)sin((2k+1)θ), (5.12)

where Jν (z) is the Bessel function of the first kind of order ν , to Equation (5.9). As a result,

(5.13)T =
1
2

[
1 + cosϕb

(
J0 (z) + 2

∞

∑
k=1

J2k (z)cos
(

2k sin
(

Ωt +
ψ
2

)))

− 2sinϕb

∞

∑
k=0

J2k+1 (z)sin
(
(2k + 1)

(
Ωt +

ψ
2

))]
.

If the DE-MZM is biased at the quadrature point, Vb = Vπ/2, ϕb ≈ π/2. As a result, the even
numbered harmonics are suppressed, and Equation (5.13) simplifies to

(5.14)T =
1
2
−

∞

∑
k=0

J2k+1 (z)sin
(
(2k + 1)

(
Ωt +

ψ
2

))
.

Therefore, the output of the PD consists of a DC component plus a summation of the odd
harmonics of the RF signal. The amplitudes of the sinusoidal components are a function of
sin(ψ/2). If V � Vπ , z is small, and J1 (z)� J2k+1 (z) where k = 1,2 . . .∞. As a result, the
magnitude of the AC component of the modulated signal may be approximated as |J1 (z)|. When
the argument, z, is small, the Bessel function of the first kind may be approximated as [70],

Jν(z)≈ (0.5z)ν/Γ(ν +1), (5.15)

where Γ is the Gamma function defined as

Γ(ν) = (ν +1) ! (5.16)

if ν is a positive integer. Applying Equation (5.15), the normalized value of |J1 (z)| can be ap-
proximated as |sin(ψ/2)| when V � Vπ . The two functions are plotted versus θ in Figure 5.2
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when V = 0.1 and Vπ = 2.6 and d = λ/2. The functions are approximately equal with a max-
imum error, εmax = 2.8× 10−3 and a mean squared error, MSE = 2.4× 10−6. Therefore, the
normalized value of Vout can be approximated as

Vout

max(Vout)
≈ |sin(ψ/2)| (5.17)

and can be used to determine θ , from Equation (5.1) provided V �Vπ . Note that the peak value
in Figure 5.2a corresponds to ψ =±180deg and θ =±90deg. To have the peak value of occur
at θ = 0deg which corresponds to ψ = 0deg, a 180deg phase shift can be applied to the voltage
at terminal number (2) of the DE-MZM. This result in Vout ≈ cos(ψ/2).

RSOFT Design Group’s OptSim software package was used to simulate the two-element pho-
tonic DF array (Figure 5.1) with antenna spacing equal to λ/2 through the PD output using
ideal components in a noise free environment. The simulation was conducted for −90deg ≤
θ ≤ 90deg in one degree increments. Figure 5.3a and Figure 5.3b display the output of the
DE-MZM and PD respectively when θ = 90deg. The waveform is a sinusoid centered about a
positive DC value as predicted by the above analysis. The OptSim data was exported to MAT-
LAB where the mean value was determined and subtracted from the data to simulate the DC
blocking capacitor, and the normalized magnitude was derived simulating the normalized enve-
lope detector output. In Figure 5.2b, the results of the simulation are plotted against |sin(ψ/2)|
demonstrating the use of a DE-MZM in phase interferometry to determine θ . The simulation re-
sults and the theoretical approximation of the normalized envelope detector output, |sin(ψ/2)|,
are approximately equal.

The theoretical and simulations results were verified experimentally using the equipment setup
displayed in Figure 5.4. A 2.4 GHz CW signal was generated with a Hewlett Packard HP
83711B synthesized CW generator. The input signal passed through a 4-to-1 splitter prior to
being applied to the electrodes of the DE-MZM (Fujitsu FTM9712ER) via mechanical phase
shifters. The phase shift applied to the signal at the second electrode was varied between 0 and
−180 degrees. A CW optical carrier signal was provided by a distributed feedback (DFB) high
power laser diode (EM4) operated at a wavelength of 1550 nm. The PD used was a high speed,
InGaAs PD (Newport Model 1014). The low noise amplifier (LNA) was a RF-Bay LNA-2700
designed for operation between 2.3 and 3.2 GHz.

The results are presented for an input signal power level of 3 dBm and 6 dBm in Figure 5.5a
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and Figure 5.5b respectively, where the normalized peak-to-peak voltage at the output of the
LNA is plotted against the theoretical and simulation results. The experimental data closely
approximates the theoretical and simulation results. The minimum normalized voltage level is
above 0 VDC due to several factors including a difference in magnitude between the signals
applied to the electrodes of the DE-MZM, the extinction ratio of the DE-MZM, noise in the
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Figure 5.2: Normalized transmission coe�cient vs. phase angle. In (a), the blue curve with �o� markers
graphs the function |J1 (z) |/max(|J1 (z) |). The red dashed line graphs the function |sin(ψ/2) |. (b)
is Vout/(max(Vout)) vs. DOA (θ deg) for DE-MZM biased at quadrature point, Vb =Vπ/2. Red solid
line graphs the theoretical results, the blue dashed line plots the simulation results.
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signal, and the dark current of the PD. The experimental data confirms that the DE-MZM can
be used in a phase interferometry application.

If the DE-MZM is biased at its minimum transmission point, Vb = KVπ , where K is an even
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Figure 5.3: (a) displays the DE-MZM output for a DOA of 90deg. (b) displays the PD output for a
DOA of 90deg.

PD CW 
Laser 

DC 
BLK LNA 

ΨSig 
Gen 

Ψ

Scope 

DE-MZM 

Figure 5.4: Block diagram of experimental setup for testing of a dual electrode Mach-Zehnder mod-
ulator in phase interferometry application.
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(a)

(b)

Figure 5.5: Experimental results for two element array (bench test):(a) Psig = 6 dBm, (b) Psig = 3 dBm.

integer, the odd harmonics are suppressed. In this case, Equation (5.13) reduces to

T =
1
2

[
1+ J0 (z)+2

∞

∑
k=1

J2k (z)cos
(

2k sin
(

Ωt +
ψ
2

))]
. (5.18)

If V � Vπ , Vout ≈ |J2(z)|. As a result, the normalized value of Vout may be approximated as
(1− cosψ)/2. The normalized values of |J2(z)| and the function (1− cosψ)/2 are plotted
versus θ in Figure 5.6a. The two curves are approximately equal with a maximum error εmax =

0.012 and mean square error MSE = 4.2064×10−7. The normalized envelope detector output
voltage, therefore, can be approximated as

Vout

max(Vout)
≈ 1

2
(1− cos(ψ)) . (5.19)
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Simulations were also performed for this case where the DE-MZM is biased at the minimum
transmission point using ideal components in a noise-free environment. The simulation results
are plotted against the approximation of Equation (5.19) in Figure 5.6b. The curves provide
similar results and demonstrate the use of a DE-MZM biased at the minimum transmission
point for phase interferometry applications. Experimental results are not provided for this case
due to the low voltage levels at the PD output.
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Figure 5.6: Normalized transmission coe�cient vs. phase angle. In (a), the blue solid line curve graphs
with �o� markers the function |J2 (z) |/max(|J2 (z) |). The red dashed line curve with �x� markers graphs
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5.2 Photonic Implementation of a Robust Symmetrical Num-
ber System-based Direction Finding Array

A block diagram of a photonic RSNS based DF array is shown in Figure 5.7. A CW laser
source is used, and the optical signal is passed through a 3:1 optical splitter. The intensity of the
optical signal applied to each DE-MZM is modulated by the RF signals applied to its electrodes.
The RF input signal received at the reference antenna is applied to electrode one of each of
the three DE-MZMs. An identical phase shifted RF signal is received at each measurement
antenna element and applied to electrode two of the associated DE-MZMs. The signals applied
at electrode two of the DE-MZMs are shifted in phase to align the folding wave forms generated
by the array with the RSNS sequences used in coding and quantizing the DOA. The output of
the DE-MZMs are converted to electrical signals using a PD.
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Figure 5.7: Block diagram of the photonic direction �nding antenna array using a robust symmetrical
number system preprocessing.
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The distance of each measurement element antenna from the reference antenna is based on
the RSNS moduli and the number of folds within the dynamic range M̂RSNS [57]. For a given
modulus mi the number of folds within M̂RSNS is

ni =
M̂RSNS

2miN
, (5.20)

and the distance di between each measurement element and the reference element is equal to

di =
M̂RSNSλ

4miN
ξ . (5.21)

A right shifted RSNS with mi = {7,8,9}with a M̂RSNS = 133 is used to represent−60deg≤ θ ≤
60deg at the design frequency fmax. The RSNS folding sequences are plotted against the DOA
in Figure 5.8. Each RSNS channel’s residue values are determined by applying the normalized
envelope detector output voltage Vi to a comparator network where the comparator reference
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Figure 5.8: Robust symmetrical number system residues versus direction of arrival, θ deg.
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values are
Vj,mi = sin

(
2mi−2 j+1

4mi
π
)
. (5.22)

The RSNS represents the continuous DOA by sorting the DOA into M̂RSNS discrete DOA bins
where the DOA bin center θ̂k is

θ̂k = arcsin
(

2k+1

ξ M̂RSNS
− 1

ξ

)
, (5.23)

and the bin width rk is

rk = arcsin

(
2k− M̂RSNS +2

ξ M̂RSNS

)
− arcsin

(
2k− M̂RSNS

ξ M̂RSNS

)
. (5.24)

Phase shifts listed in Table 5.1 are applied to the signals received at each measurement element
to align the folding waveforms generated by the array with the RSNS folding sequences shown
in Figure 5.8. The folding waveforms generated by the array are plotted both with and without
the applied phase shifts in Figure 5.9a through Figure 5.9d. With the phase shifts applied, the
arrays folding waveforms align with the RSNS sequences.

Table 5.1: Required phase shifts to match folding wave forms to robust symmetrical number system's
waveforms for mi = {7,8,9}.

mi 7 8 9

ϕi deg 0 -52.5 -293.33

If the frequency of the incident RF wave is less than fmax, the folding waveforms will expand
over a larger FOV. To determine the effect on the array transfer function, Equation (5.21) is
inserted into Equation (5.1), and the wavelength is expressed as λ = c/ f to yield

ψi = ξ
M̂RSNS f

2miN fmax
π sin(θ). (5.25)

The ratio, f/ fmax, in Equation (5.25) changes the scaling of the folding waveforms. Therefore,
a new scaling factor,

ξ̃ = ξ
f

fmax
(5.26)
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Figure 5.9: Alignment of linear array folding waveforms with the RSNS folding waveforms. (a). For
mi = 8, (b) is without phase shift, (d) is with phase shift applied. For mi = 9, (c) is without the phase
shift and (d) is with the phase shift applied. The blue solid line curves are the folding waveforms and
the red dotted line curves are the associated RSNS folding waveform normalized.

is used to determine θk in Equation (5.23) and the corresponding angular resolution rk in Equa-
tion (5.24). For example, if the array is designed for a FOV = 120deg at fmax = 8 GHz and a
signal with a frequency, f = 6 GHz, is received, the folding waveforms will expand as shown
in Figure 5.10. The array’s transfer function will also expand over a larger FOV reducing the
angular resolution of the array which is illustrated by comparing Figure 5.11a and Figure 5.11b.
The spatial resolution provided by Equation (5.24) decreases as the DOA moves further from
broadside which can be seen in the insets of Figure 5.11a and Figure 5.11b.
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Figure 5.10: Comparison of folding waveforms for each channel at a design of f = 6 GHz compared
to those resulting from an incident wavefront at f = 8 GHz. The RSNS folding waveforms are plotted
normalized by the modulus value to demonstrate the alignment of the waveforms.
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(a)

(b)

Figure 5.11: E�ect of signal frequency on Photonic RSNS DF Array transfer function. (a) is the
transfer function when the frequency of the incident RF signal is equal to the design frequency (in
this case f = 8 GHz). (b) shows the transfer function for a lower frequency ( f = 6 GHz).
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5.3 Simulation Results for Photonic Direction Finding Array
with Robust Symmetrical Number System Preprocessing

Simulation of the photonic DF array with RSNS preprocessing displayed in Figure 5.7 was con-
ducted using RSOFT Design Group’s OptSim software for the components up to and including
the PDs. OptSim is a computer software package that enables modeling of fiber-optic networks
and fiber-optic circuits. The user friendly features of OptSim enable design and simulation of
photonic systems in a similar manner as SIMULINK by MathWorks. OptSim contains mod-
els for most of the common electro-optical components and allows interfacing directly with
MATLAB to import models for use in simulations or to export and import data and results.

The front-end components (antennas, phase shifters, and LNAs) are simulated using phase
shifted sinusoids with a magnitude of 0.1 V and a frequency of 2.4 GHz corrupted with AWGN
as the electrical input signals applied to the DE-MZM electrodes. The phase shifts (ψi +ϕi)
are based on each antenna’s distance from the reference antenna and the phase shifts listed in
Table 5.1 that are required to align the array’s folding waveforms with the RSNS sequences in
Figure 5.8. The optical source used in the simulation is a CW laser with a wavelength of 1550
nm and a 20 mW power output. For the DE-MZMs, Vπ = 2.6 V. The output data from the PDs is
exported to MATLAB where the mean value is subtracted from each signal to simulate the DC
blocking capacitor, and the signal’s envelope is determined. The signal at the envelope detector
output is normalized and applied to a comparator network to determine the RSNS symmetrical
residues.

Simulations using ideal components in a noise-free environment are performed to demonstrate
the concept. Additional simulations are then presented to analyze the photonic RSNS DF ar-
ray’s performance when non-ideal components are used in a signal environment corrupted by
AWGN. For the DE-MZM, the extinction ratio and excess loss are considered, and for the PDs,
the effects of quantum noise, non-ideal responsivity, and dark current are examined. The sim-
ulations are conducted for a FOV of −60deg ≤ θ ≤ 60deg in 0.075deg increments. In the
simulations, the DE-MZMs are biased at the quadrature point.

5.3.1 Simulation Results Using Ideal Components in a Noise-free
Environment

A CW sinusoidal signal is used as a reference signal which is applied to electrode (1) of each
DE-MZM. Identical phase shifted signals are applied to electrode (2) of the corresponding
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DE-MZMs simulating the arrival of an RF wavefront at the antennas of the array. Simulations
were conducted for −60deg ≤ θ ≤ 60deg and compared to the theoretical folding waveforms
defined by

xi =
∣∣∣sin

(ψi

2
+ϕi

)∣∣∣ (5.27)

where ψi is defined by Equation (5.1) and the values for ϕi are defined in Table 5.1. The
theoretical and simulated folding waveforms are displayed in Figure 5.12a. The simulation
results closely approximate the theoretical approximation of Equation (5.17) demonstrating the
ability to use a DE-MZM in a phase interferometry role.

The RSNS residues produced for each value of θ are plotted in Figure 5.12b. The simulated
data closely approximates the theoretical curves. In Figure 5.13, the simulation results are
plotted against the array’s theoretical transfer function. The transfer function generated by the
simulation closely approximates the theoretical curve.

5.3.2 Simulation results for non-ideal components
Simulations were also performed using non-ideal components for a signal environment cor-
rupted by AWGN. An extinction ratio of 25 dB and an insertion loss of 3 dB are used for the
DE-MZMs. For the PDs, a dark current of 0.1 nA, quantum efficiency of 0.7, and a 20 GHz
BW are specified. Also, electrical and quantum noise are included in the OptSim modeling. The
maximum value of the envelope detector used in normalizing the output values for each chan-
nel was generated by using a separate identical channel with a constant phase shift of 180deg
from the reference signal in the simulation and averaging the value over time. Simulations were
conducted for two signal-to-noise ratios (SNRs), SNR = 30 dB and SNR = 20 dB.

The results for a SNR = 30 dB are presented in Figure 5.14 and Figure 5.15. The folding
waveforms generated by each channel of the DF array for−60deg≤ θ ≤ 60deg are displayed in
Figure 5.14a. Due to the extinction ratio of the DE-MZM, the minimum value of the normalized
envelope is greater than zero. In Figure 5.14a, there are several discontinuities in the curve
derived from the element associated with the modulus, m = 8. The discontinuities occurred at
the points were the data was concatenated to form the output vector. The OptSim simulations
were performed in 7.5 deg blocks due to the amount of computer memory required for each
simulation. These discontinuities did not significantly impact evaluation of the results. The
folding waveforms of Figure 5.14a resemble those of Figure 5.12a.

The values of the symmetrical residues were determined by applying the normalized envelope
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detector’s output value at each time instant to the comparator network. The residue values for
100 time instances were averaged and rounded to the nearest integer. The residues resulting
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Figure 5.12: (a) displays the normalized envelope detector output versus the direction of arrival,
θ deg (b) displays the resolved RSNS residues for each channel. Theoretical data is plotted with a
blue dashed line, simulated data is plotted with a solid red line.
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from the simulation and those based on theoretical calculations are shown in Figure 5.14b.
From Figure 5.14b, it is observed that the residue values do not match the theoretical values
exactly; however, the overall staircase type waveform is preserved. The RSNS vector generated
for each DOA is converted to a decimal bin number that is represented by a quantized DOA
θ̂k. The estimated DOA θest is plotted against the DOA θ in Figure 5.15. The theoretical
transfer function is also plotted in Figure 5.15. The simulated curve shows six values that
produce invalid RSNS codes for which the values of θest were set to zero degrees. Two insets
are provided to show the details in the curves and how the simulation closely approximates the
theoretical transfer function. Examination of the inset around θ = 0 deg reveals an erroneous
value for θ̂k. This error corresponds to the discontinuity that was noted in the folding waveform
for the m = 8 curve at 0 deg shown in Figure 5.14a and resulted in an erroneous residue value
shown in Figure 5.14b.

Simulations were also conducted when the SNR = 20 dB. The normalized envelope detector
output voltage is plotted along with the theoretical folding waveforms in Figure 5.16a. As seen
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Figure 5.13: Estimated direction of arrival θest deg versus direction of arrival θ deg using ideal com-
ponents.
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Figure 5.14: Simulation using non-ideal components and SNR = 30 dB: (a) normalized envelope
detector output voltages, (b) residues versus direction of arrival, theoretical data is the blue solid line,
the simulated data is the red dashed line.

in the previous simulations for SNR= 30 dB, the envelope detector output voltage does not go to
zero due to the extinction ratio and the AWGN. As a result, several errors occur in the resolved
residues which are shown in Figure 5.16b. The errors in the residues are carried forward in
the transfer function, presented in Figure 5.17. These errors result in either invalid RSNS code
values that were set to zero degrees or erroneous codes resulting in decoding errors. Comparing
the results for a SNR = 30 dB to those with a SNR = 20 dB, the performance is degraded as the
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Figure 5.15: Transfer function of photonic direction �nding array with robust symmetrical number
system for SNR=30 dB.

SNR degrades.
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Figure 5.16: Simulation results for nonideal components and SNR = 20 dB, (a) normalized envelope
detector output, (b) residues versus direction of arrival. Blue solid line represents the theoretical
values, and the red dashed line represents the simulation results.
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Figure 5.17: Transfer function of photonic direction �nding array with robust symmetrical number
system preprocessing for SNR = 20dB. Blue solid line is theoretical transfer function, red dashed line
represents the simulation results.

118



5.4 Experimental Results
In this section, experimental testing results are presented for a photonic DF array with RSNS
preprocessing. The block diagram for equipment configuration used for the bench testing is
shown in Figure 5.18. A 2.4 GHz CW sinusoidal signal with a 6 dBm power level was provided
by a Hewlett Packard (HP) 83711B synthesized CW generator. Narrow band testing was con-
ducted to prove the concept due to the cost constraints imposed by wideband components, i.e.
antennas, and LNAs. The CW signal was routed to electrode one of each DE-MZM and also
to the input of each manual phase shifter used to generate the required phase shift for the sig-
nal received at electrode two of each DE-MZM (Fujitsu FTM9712ER). The optical source was
provided by a high power 1550 nm wavelength DFB laser at a constant power level of 60 mW.
The optical signal was split and routed to each DE-MZM where the optical signal’s intensity
was modulated by the voltage difference between the DE-MZM’s electrodes. The modulated

Figure 5.18: Block diagram of equipment setup for bench testing.
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optical signal in each channel was detected and converted back to an electrical signal using high
speed InGaAs PDs (Newport Model 1014).

The output of the PDs was passed through a DC blocking capacitor and then amplified using
two cascaded LNAs (RF-BAY LNA-2700) prior to envelope detection using an Analog Devices
envelope detector evaluation board (ADL 5511-EVALZ). The envelope signal output Venv is
biased on a reference voltage Ere f which is also available as an output. The true envelope
was provided by subtracting Ere f from Venv using an instrumentation amplifier (INA114) circuit
shown in Figure 5.19a. The bias voltages supplied to the DE-MZMs are provided by the circuit
shown in Figure 5.19b, and the 12 VDC and 5 VDC power supplies required for the LNAs
and envelope detector circuits are shown in Figure 5.19c and Figure 5.19d. The output of the
instrumentation amplifier was sent to an field programmable logic device (FPGA) (National
Instruments Virtex-5 LX30 Compact RIO Reconfigurable Chassis and NI cRIO 9012 Real time
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Figure 5.19: (a) Instrumentation ampli�er circuit, (b)12 VDC power supply circuit, (c) 5 VDC power
supply circuit, and (d) bias voltage power supply circuit.
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controller). The FPGA implemented a comparator network and a RSNS to binary algorithm.
The FPG! (FPG!) output was the DOA bin number that was converted to an angular value via
a lookup table. In order to use the FPGA code developed in [88], a left shifted RSNS code with
mi = {7,8,9} was used with the code length truncated to a length of 131 instead of using the
right shifted RSNS discussed in Section 5.2 and Section 5.3.

Manual phase shifters (Sage Laboratories Model 6708) were used to insert a phase shift between
the sinusoidal signals applied at the two electrodes of each DE-MZM to simulate the phase
shift ψi that would be present for a given DOA. A rotational turn counter was attached to the
shaft of each phase shifter to allow for repeatability in the measurements. The phase shifters
were calibrated using a vector network analyzer (VNA) (HP 8517A S-parameter test set and
HP 8510C Network Analyzer). The data points were curve fitted to a linear equation for each
phase shifter. The linear curves for the phase shifters are displayed in Figure 5.20. Due to the
phase shifters providing only 180 degrees of phase shift at the signal frequency of 2.4 GHz
and the symmetrical transfer function of the DE-MZMs, phase angles between 180 degrees and
360 degrees were simulated by inserting a phase shift of 360−ψi.

Data was taken for DOA between −60deg and +60deg in 0.2deg increments. The residue
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Figure 5.20: Phase Shifter transfer functions, (a) ψ7, (b) ψ8 and (c) ψ9.
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values resulting in each channel were recorded and graphed against the expected residue values
based on the theoretical predictions provided by Equation (5.17) and Equation (5.22). Exam-
ining Figure 5.21, the experimental data follow a staircase waveform similar to that followed
by the theoretical predictions. There are several points where the transitions between values do
not occur when expected or where the tread of the experimental stair case wave form is either
wider or narrower than the theoretical curves. These errors are attributed to the drifting the
modulator bias point and the amplifier circuits’ gain with temperature. To compensate for this
drift in output voltage, pauses were made during data collection to adjust the gain of the instru-
ment amplifier circuit so that the maximum output voltage, corresponding to a phase shift of
180 degrees, remained at the maximum value of 4 VDC. Also, to minimize system drift due to
temperature, the data was collected during the evening when the temperature in the laboratory
was more stable and remained relatively constant.

The estimated direction of arrival for each data point is plotted against the theoretical transfer
function of the photonic DF array with RSNS preprocessing in Figure 5.22. The experimental
data closely approximates the theoretical transfer function. A few of the RSNS code results
were invalid and were set to 0deg. The detail of the curves are displayed in Figure 5.22b and
Figure 5.22c where it can be seen that the experimental results follow the theoretical results,
but the transitions between the DOA bins do not occur at the proper locations resulting in some
DOA bins that are narrower or wider than the theoretical curve. The error signal, (θest−θ), is
displayed in Figure 5.23. The mean value and standard deviation were determined for the error
signal, neglecting the data points that resulted in invalid RSNS code vectors and the outlying
values at θ = {−59.8deg,−59.6deg}. The errors in the experimental transfer function results
are attributed to the voltage drift of the modulator bias point and the amplifiers experienced
during the bench testing. Use of a DE-MZM bias control circuit and amplifiers with increased
stability and/or adaptive gain features would allow for more stable system performance.
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5.5 Simulation of Multiple Pulsed Signals

The majority of radar systems are based on pulsed sinusoidal signals. The pulse repetition rate
can be either constant, staggered, or jittered [89]–[91]. If more than one emitter is present, the
received pulses must be sorted based on the signal parameters including the carrier frequency
( fc), PW, PRF, pulse amplitude, and DOA [89] to identify the individual emitters. In EW re-
ceivers, time-of-arrival (TOA) measurement is usually the most accurate parameter available.
Time-of-arrival analysis is therefore commonly used to determine the PRF and perform the sort-
ing of pulses known as de-interleaving [92]. De-interleaving may also be performed by using
multiple parameter algorithms that use several parameters such as DOA, fc, and PW. These
algorithms cluster or group pulses with common parameters, typically DOA and fc, prior to
de-interleaving the pulses in each cluster using TOA data. Emitters are identified by comparing
the parameters of each signal that form an emitter descriptive vector by correlating them with a
library of known emitters. The use of vector neural networks for emitter identification has also
been investigated in [93]–[97].

The simulations and experimental testing discussed in Section 5.3 and Section 5.4 demonstrated
the performance of the photonic DF array with RSNS preprocessing when receiving a narrow
band CW signal. As discussed in Section 5.2, DE-MZMs have BWs on the order of 40 GHz.
This allows the intercept of signals over large BW, for example 2-18 GHz commonly seen in
modern EW receivers, without the requirement to down-convert the signal or channelize the
signals. The DF antenna spacing is based on the maximum design frequency. If the frequency
of the intercepted signal is less than the maximum design frequency, the folding waveforms
expand changing the DOA mapping of the RSNS vectors and reducing the angular resolution of
the array. Therefore, the frequency of each received pulse must be determined and used in the
array signal processing to calculate the DOA. Also, if more than one emitter is present, some
pulses will interfere with each other causing errors in RSNS residues and subsequently either
invalid RSNS codes or erroneous values for the estimated DOA.

To demonstrate the performance of the photonic DF array with RSNS preprocessing, simula-
tions were conducted in MATLAB. The simulation flow chart is shown in Figure 5.24. A signal
consisting of two pulsed sinusoidal signals was simulated at the output of each PD based on
the theoretical results presented in Section 5.1 and Section 5.2. The carrier frequencies of the
signals were in the MHz range to limit the computer resources required to conduct the sim-
ulations over a time period of several milliseconds. The design frequency for the array in the
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simulations is 100 MHz. The reference antenna signal was processed separately to determine fc

that applies to each DOA pulse through examination of the periodogram and spectrogram. The
periodogram was produced using the Welch method employing a Hamming window, a 2048
point FFT, and 50 percent overlap. The spectrogram was determined using a 2048 point FFT
with Hamming window and 75 percent overlap. A hard threshold equal to twenty times the
median value was applied to the power spectrum represented by the spectrogram to determine
the frequency of the pulses and the time values corresponding to the pulses. The results were
applied to the decimal values corresponding to the RSNS vectors after the mode function was
applied to select the value that occurs most frequently in the samples that are contained within
each pulse. Two separate examples are shown below to demonstrate the performance of the
photonic array and the processing of two pulsed emitters. A third example is also presented
when three pulsed emitters are present.

The first example consists of two emitters whose parameters are listed in Table 5.2. A graphical
representation of the input signal is shown in Figure 5.25a. An example of the interference that
occurs when two pulses are received simultaneously is shown in Figure 5.25b. The carrier fre-
quencies of the two pulsed sinusoids were determined from the periodogram of the signal using
the Welch method. The spectrogram of the signal was also used to determine the location of
the pulses in a time-frequency representation. The spectrogram and periodogram are displayed
in Figure 5.26. From the periodogram shown in Figure 5.26b, the carrier frequencies of the
two pulsed waveforms were estimated to be to be equal 60.2 MHz and 29.2 MHz. From the
spectrogram data, the time sequences corresponding to the received pulses and their frequencies
were applied to Equation (5.26) and Equation (5.23) to determine the DOA versus time plot.
An estimate of the PW and PRF can be obtained from the spectrogram; however, more accurate
algorithms exist based on TOA data. From the spectrogram shown in Figure 5.26a, the PRF for
emitter number one is estimated to be 8 KHz, and for emitter number two the PRF is estimated
to be 7 KHz.

The resulting DOA versus time plots are displayed in Figure 5.27. In order to resolve the
DOA for each pulse and remove errors associated with noise or invalid RSNS codes, the mode

Table 5.2: Multiple pulsed emitters�example 1: signal parameters.

Emitter PRF (kHz) PW (µs) fc (MHz) DOA (deg)

1 8 6 60.2 30
2 7 8 29.1 -10
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Figure 5.25: Multiple pulsed signals example 1 (a) Input signal. (b) Interference of pulses.
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Figure 5.26: Spectrogram and periodogram for example 1 (PRF1 = 8 kHz, PW1 = 6 µs, fc1 = 60.2MHz
PRF2 = 7 kHz, PW2 = 8 µs, fc2 = 29.1 MHz). (a) Spectrogram of two pulsed sinusoidal signals. (b)
Periodogram of input signal using Welch method with 2048 point FFT, 50 percent overlap and
Hamming window.

function that selects the value that occurs most often in the set of data was applied to the decimal
value representing the decoded RSNS vector within the spectrogram time slots corresponding to
each pulse. From the results in Figure 5.27, the estimated DOA for each pulse is approximately
equal to the DOA of the transmitted signals.

For the second example, two pulsed emitters with the parameters listed in Table 5.3 are used.
The input signal is shown in Figure 5.28. The carrier frequencies of the two pulsed sinusoids
was determined from the periodogram of the signal using the Welch method. The spectro-
gram of the signal was also used to determine the location of the pulses in a time-frequency
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Figure 5.27: Multiple pulsed signal example 1�two pulsed signals, one with a DOA of 30 degrees and
one with a DOA of -10 degrees. (a) Direction of Arrival v.s. time. (b) Magni�ed view of (a).

representation. The spectrogram and periodogram are displayed in Figure 5.29. From the peri-
odogram shown in Figure 5.29b, the carrier frequencies of the two pulsed signals are estimated
as f̂c1 = 95.8 MHz and f̂c2 = 55.6 MHz. From the spectrogram data, the time sequences cor-
responding to the received pulses and their frequencies were applied to Equation (5.26) and
Equation (5.23) to determine the DOA versus time plot. From the spectrogram displayed in
Figure 5.29a, the PRF of emitter number one is estimated to be 10 kHz, and the PRF of emitter
number two is estimated to be 2 kHz. The resulting DOA versus time plots are displayed in Fig-
ure 5.30. From the results in Figure 5.30, the estimated DOA for each pulse is approximately
equal to the DOA of the transmitted signals.

A third example is provided where three pulsed emitters are present. The parameters of the three
emitters are provided in Table 5.4. The reference antenna signal is displayed in Figure 5.31 and
the spectrogram displaying the time versus frequency information is provided in Figure 5.32.
Examining Figure 5.32a, three separate pulsed signals are shown. The periodogram in Fig-
ure 5.32b shows two peaks at 48.5 MHz and 7.76 MHz. Due to the proximity of the carrier
frequencies of emitters number one and number two, only two peaks are shown in the peri-
odogram of the reference signal. From the spectrogram shown in Figure 5.32a, three pulsed

Table 5.3: Multiple pulsed emitters�example 2: signal parameters.

Emitter PRF (kHz) PW (µs) fc (MHz) DOA (deg)

1 10 10 95.9 20
2 2 7 55.6 -20
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Figure 5.28: Multiple pulsed signals example 2�input, (a) Simulation PD output signal composed of
two pulsed sinusoids plus AWGN. (b) Magni�ed view of signal in (a).
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Figure 5.29: Spectrogram and periodogram for example 2 (PRF1 = 10 kHz, PW1 = 10 µs, fc1 =
95.9 MHz PRF2 = 2 kHz, PW2 = 7 µs, fc2 = 55.6 MHz). (a) Spectrogram of two pulsed sinusoidal
signals. (b) Periodogram of input signal using Welch method with 2048 point FFT, 50 percent overlap
and Hamming window.

Table 5.4: Multiple pulsed emitters�example 3: signal parameters.

Emitter PRF (kHz) PW (µs) fc (MHz) DOA (deg)

1 5 10 48.5 10
2 2 5 48.7 -10
3 3 3 7.81 45

signals are observed. The PRF of emitter number one is estimated to be 5 kHz; the PRF of
emitter number two is estimated to be 2 kHz, and the PRF of emitter number three is estimated
to be 3 kHz. The DOA versus time data is plotted in Figure 5.33. Although the the DOA is
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Figure 5.30: Multiple pulsed signals example 2�two pulsed signals, one with DOA = 20deg and one
with DOA =−20deg. (a) Direction of Arrival v.s. time. (b) Magni�ed view of (a).
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Figure 5.31: Multiple pulsed signals example 3, (a) input signal, (b) magni�ed view of input signal.

resolved, some errors result at the beginning and ending points of the pulses which can be seen
in Figure 5.33b. These errors are most likely due to the errors in the residues resulting from the
Gibbs effect due to the filtering operations involved with the envelope detection.
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Figure 5.32: Spectrogram and periodogram for example 3 (PRF1 = 5 kHz, PW1 = 10 µs, fc1 =
48.5 MHz, PRF2 = 2 kHz, PW2 = 5 µs, fc2 = 48.7 MHz, PRF3 = 3 kHz, PW3 = 4 µs, fc3 = 7.81 MHz).
(a) Spectrogram of three pulsed sinusoidal signals. (b) Periodogram of input signal using Welch
method with 2048 point FFT, 50 percent overlap and Hamming window.
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Figure 5.33: Multiple pulsed signals example 3, (a) DOA versus time, (b) magni�ed view of (a).

5.6 Concluding Remarks
In this chapter, the ability to use a DE-MZM in phase interferometry DF applications was
proved theoretically and demonstrated through simulations and experimental testing. A four
element photonic DF array with RSNS preprocessing was designed and tested via simulation
using RSOFT’s OptSim software and MATLAB. The concept was then demonstrated satisfac-
torily by bench testing the hardware configuration displayed in Figure 5.18. In Section 5.5, the
performance of the array was investigated when multiple pulsed emitters are present. The DF
array was shown to accurately resolve the DOA of the emitters when the carrier frequency of

133



each pulse is provided to the array’s DOA processing. The NYFR receiver is one example of a
CS receiver that is ideally suited to provide the frequency information to the DOA processing
due to its wide BW and less complex signal processing algorithms.

The photonic DF array with RSNS preprocessing can be used to monitor a wide BW to de-
termine the DOA of pulsed emitters. The components used in the hardware design can be
modified to use wide band antennae and amplifier circuits. Also, adaptive gain amplifiers can
be used to ensure the signals applied to the DE-MZM electrodes are of equal amplitude allow-
ing for simpler normalization and comparator level assignment. Also, a bias control circuit for
the DE-MZMs can be used to compensate for temperature drift of the DE-MZM bias points.
Among the challenges to implementing a wideband photonic DF array with RSNS preprocess-
ing is the close spacing of array antennas at high frequencies and the comparatively large foot-
print of wideband spiral antennas. As a result the antenna arrays may require being staggered in
height. Further investigation of this concept including testing in an anechoic chamber and field
testing against pulsed and CW emitters is warranted.
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CHAPTER 6:

Symmetrical Number System - Compressive Sensing

Cueing Receiver

In addition to the CS receiver architectures presented in Chapter 2, there are many undersampled
receiver concepts that rely on coprime sampling rates to resolve frequency ambiguities resulting
from aliasing [51], [98]–[102]. In [98]–[100], CRT-based algorithms are used to determine a
signal’s frequency components. Another technique that implements coprime undersampling
and applies CS theory in a cognitive radio application is presented in [101]. This architecture
models spectrum aliasing as a linear projection from the Nyquist rate sampled spectrum to the
undersampled spectrum and applies CS theory to resolve the signal’s frequency spectrum using
Basis Pursuit. In [102], a receiver architecture that requires only two coprime sampling rates is
presented. The algorithm forms appropriate difference sets from the samples and estimates the
signal’s autocorrelation function. From this estimate, the power spectral density is determined
using the MUSIC algorithm.

An undersampled receiver architecture that uses the SNS to resolve a single frequency ambigu-
ity due to undersampling is presented in [51]. It was demonstrated in [51] that the DFT naturally
encodes real signal frequency information into the same format as the SNS. Consequently, a
single frequency ambiguity that results from undersampling can be resolved exactly using r≥ 2
channels provided the signal’s frequency is less than the dynamic range of the SNS M̂SNS. The
receiver architecture presented in [51] undersamples an input signal with sampling frequencies
equal to the SNS moduli, mi. In each channel, a mi point DFT is performed, and the DFT bin
containing the signal’s energy is identified. The corresponding DFT bin numbers (symmetrical
residues) for each channel form the SNS vector representing the frequency of the signal. The
SNS vector is then converted to a more convenient integer representation.

In this chapter, a novel SNS-CS cueing receiver architecture is presented that allows accurate
signal frequency identification in a sparse signal environment. The SNS-CS cueing receiver
forms a measurement vector y by collating the samples obtained through coprime undersam-
pling with sampling rates equal to the SNS moduli mi. The SNS-CS cueing receiver also forms
a deterministic partial IDFT sensing matrix A based on the receiver’s sampling rates, and ap-
plies CS recovery algorithms such as the LASSO algorithm to estimate the frequency spectrum
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X. The SNS-CS cueing receiver’s performance is examined through Monte Carlo simulations
and is compared to the performance achieved when a random sensing matrix is used in the CS
recovery algorithm. The performance of the SNS-CS cueing receiver is shown to be comparable
to that of a random sensing CS receiver architectures in identifying the frequencies of sinusoids
in a sparse signal environment.

The major contributions presented in this chapter are that the SNS-CS cueing receiver is demon-
strated to allow the identification of an increased number of sinusoids than the CRT-based al-
gorithm described in [100] and the algorithm in [51] for a fixed number of coprime sampling
rates. Also, the SNS-CS cueing receiver is demonstrated to allow accurate frequency identifica-
tion consistent with the theoretical predictions in [35], and its performance is demonstrated to
be comparable to the performance achieved when using a random sensing matrix. Additionally,
unlike some random sensing CS receiver architectures such as the random demodulator [40]
and the RADC [46], the SNS-CS cueing receiver simplifies the sampling process and does not
require Nyquist rate components. It also generates a partial IDFT sensing matrix based upon the
SNS moduli that is not required to be stored in memory. These advantages make the SNS-CS
cueing receiver attractive for use in wideband applications.

6.1 Symmetrical Number System - Compressive Sensing Cue-
ing Receiver Concept and Theoretical Development

A r-channel SNS-CS cueing receiver is presented as a means of simplifying the sampling pro-
cess by using uniform coprime undersampling while leveraging compressive sensing theory to
identify more tonal signals than can be identified using CRT-based algorithms. The block di-
agram of a r-channel SNS-CS cueing receiver architecture is shown in Figure 6.1. The input
signal x(t) is undersampled using coprime sampling frequencies equal to the SNS moduli mi

and the samples, from the r-channels, are collated in the time domain to form the measurement
vector y. The compressive sensing signal processing uses the measurement vector y to produce
an estimate of the frequency spectrum X̃ from which the frequency components of the signal
within the bandwidth of the receiver are identified.

The sensing matrix A used in the SpaRSA algorithm [10], is formed by selecting the rows of an
N×N unitary IDFT basis matrix Ψ−1 that correspond to the SNS-CS cueing receiver’s sample
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Figure 6.1: Block diagram of a r-channel SNS-CS cueing receiver.

times. A unitary IDFT matrix Ψ−1 is defined as

Ψ−1 =
1√
N




1 1 · · · · · · 1
... ψ ψ2 . . . ψN−1

... ψ2 ψ4 . . . ψ2(N−1)

...
...

... . . . ...
1 ψN−1 · · · · · · ψ(N−1)2




(6.1)

where ψ = e j2π/N and j =
√
−1. The set of row numbers gi of Ψ−1 that correspond to the

sample times for each modulus mi are calculated as

gi = {b(lN/mi)e+1} , (6.2)

where 1 ≤ gi ≤ N, l is an integer and l ≥ 0, i = 1 · · ·r, and b•e represents rounding to the
nearest integer value. From Equation (6.2), the set, G, of L unique row numbers consisting of
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the elements that belong to all gi is formed as

G =
r⋃

i=1

gi. (6.3)

The L×N measurement basis matrix, Φ, is formed by selecting the row vectors of an N×N

identity matrix I such that
Φk = IGk where k = 1,2, . . . ,L (6.4)

and IGk is the Gk-th row of I. The selection of the rows of Ψ−1 is accomplished by pre-
multiplying Ψ−1 by Φ or

A = ΦΨ−1. (6.5)

For convenience, the signal observation period is set equal to one second. As a result, the length

N of the discrete signal x is equal to the ideal sampling frequency of x. If N =
r

∏
i=1

mi, the

SNS samples will lie on integer multiples of the sampling period of x, Tx = 1/N. However,

if N 6= C
r

∏
i=1

mi, where C is a positive integer, the SNS-CS cueing receiver sample times will

not fall on integer multiples of Tx. In this case, the rounding operation, b•e, in Equation (6.2)
is used to select the rows of Ψ−1 that most closely approximate the SNS-CS cueing receiver’s
sample times.

Two examples are shown in Figure 6.2. In the first example, N =
r

∏
i=1

mi, and in the second

example, N = 2
(

M̂SNS−1
)
<

r
∏
i=1

mi. For example, if a SNS with mi = {3,4}, M̂SNS = 5 and

N =
2
∏
1

mi = 12, from Equation (6.2)

g1 = {1,5,9} and

g2 = {1,4,7,10} .
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From Equation (6.3), G = {1,4,5,7,9,10}, and from Equation (6.4)

Φ =




1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0




.

Then, from Equation (6.5),

A =
1

2
√

3




1 1 · · · 1 1
1 ψ3 ψ3·2 · · · ψ3(11)

1 ψ4 ψ4·2 · · · ψ4(11)

1 ψ6 ψ6·2 · · · ψ6(11)

1 ψ8 ψ8·2 · · · ψ8(11)

1 ψ9 ψ9·2 · · · ψ9(11)




.

A signal x(t) = sin(8πt +π/6) and the discrete time samples obtained when sampling at mi

samples per second in the above example are shown in Figure 6.2a. Each sample of x(t) that
forms y corresponds exactly to a sample obtained when sampling at N samples per second.

Now, consider the second example where N = 2(M̂SNS−1) = 8. The SNS-CS cueing receiver’s
sample times correspond to rows G = {1,3,4,6,7} of I producing

Φ =




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0




.
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From Equation (6.5),

A =
1

2
√

2




1 1 · · · 1 1
1 ψ2 ψ2·2 · · · ψ2(7)

1 ψ3 ψ3·2 · · · ψ3(7)

1 ψ4 ψ4·2 · · · ψ4(7)

1 ψ5 ψ5·2 · · · ψ5(7)

1 ψ6 ψ6·2 · · · ψ6(7)




.

As seen in Figure 6.2b, the SNS undersampling and shows that the samples for fs = 3 Hz do
not equal integer multiples of Tx; therefore, the closest sample times of x are used to select
the appropriate rows of I to form Φ. However, the sample values obtained with a sampling
frequency of fs = 3 Hz are not representative of the sample values of x. For example, the
sample of x(t) at t = 0.375 seconds is not representative of the sample value at t = 1/3 seconds.
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Figure 6.2: Example of SNS based undersampling with (a) N =
2
∏
1

mi = 12 and (b) N = 2
(

M̂SNS−1
)
=

8.
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As a result, errors in the reconstructed frequency spectrum occur. To ensure that the sample
values that form y are representative of samples of x, the sensing matrix dimension, N, must
be sufficiently large compared to the maximum signal frequency fmax. The ratio of the sensing
matrix dimension to fmax is defined as

ζ =
N

2 fmax
. (6.6)

The effect of ζ on the performance of the SNS-CS cueing receiver is also examined through
performing Monte Carlo simulations. The Monte Carlo simulation methodology and results are
presented in the following section.

6.2 Monte Carlo Simulations
The performance of the SNS-CS cueing receiver is compared to the random sensing approach
through Monte Carlo simulations. Several SNS-CS cueing receiver architectures based on
different SNS moduli sets and subsequently different sensing matrices are evaluated. Each
SNS-CS cueing receiver architecture is examined to determine its performance for different
levels of signal sparsity in the frequency domain. Five thousand trials were conducted for each
set of simulations where the signal x is a summation of equal magnitude sinusoids with ran-
dom integer frequencies, 0 ≤ f0 ≤ fmax ≤ M̂SNS− 1, and uniformly distributed phase angles,
θ ∼U [0,2π).

Three different moduli sets are examined, mi = {21,22,23}, mi = {21,22,23,25}, and mi =

{21,22,23,25,29} when N = 1024. The performance of the SNS-CS cueing receiver is also
compared when ζ ∈ {8,16} to demonstrate the impact of ζ on system performance. The
SpaRSA algorithm is used to recover the estimated magnitude spectrum |X̃(k)|. The estimated
magnitude spectrum |X̃(k)| is compared to the signal’s magnitude spectrum |X(k)| and the prob-
ability of correctly detecting the frequencies transmitted within the bandwidth, f ≤ fmax, with-
out false detections is presented. A fixed threshold of 40 dB below the magnitude of the peak
values in |X(k)| is used to determine whether a peak exists in |X̃(k)|. The sinusoids are consid-
ered to be successfully resolved if the peaks of |X̃(k)| occur at the same frequencies as |X(k)|.
Monte Carlo simulations are also performed using normally distributed random sensing matri-
ces of equal size, and the results are compared to those of the SNS-CS cueing receiver.

A SNS-CS cueing receiver with mi = {21,22,23} and M̂ = 254 is examined in Figure 6.3
through Figure 6.5 for N = 1024, ζ = 16 and ζ = 8, corresponding to fmax = 32 Hz and fmax =
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Figure 6.3: SNS-CS cueing receiver performance: probability of detecting signal frequencies for mi =
{21,22,23} and SNR = 30 dB for (a) N = 1024, fmax = 32 Hz, and (b) N = 1024, fmax = 64 Hz.
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Figure 6.4: SNS-CS cueing receiver performance: probability of detecting signal frequencies for mi =
{21,22,23} and SNR = 20 dB for (a) N = 2048, fmax = 128 Hz, and (b) N = 1024, fmax = 64 Hz.

64 Hz. From Equation (6.2) and Equation (6.3), A is a 64×1024 partial IDFT sensing matrix.
From Equation (2.17), A can reconstruct a sparse signal consisting of S< 8 complex exponential
sinusoids or ≤ 4 real sinusoids. Comparing the results in Figure 6.3a through Figure 6.5b, the
PD is degraded with lower SNR as expected. Also, as the value of ζ lowered, performance
degraded which is also expected because the sample values composing y are more likely to
be inconsistent with the Nyquist rate samples. The SNS-CS cueing receiver’s performance is
shown to be comparable to that achieved using a random sensing matrix with regard to the
probability of detection, PD.

Symmetrical number system - compressive sensing cueing receiver was also examined when
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Figure 6.5: SNS-CS cueing receiver performance: probability of detecting signal frequencies for mi =
{21,22,23} and SNR = 10 dB for (a) N = 1024, fmax = 32 Hz and N = 1024, fmax = 64 Hz.

mi = {21,22,23,25}. The Monte Carlo simulations were conducted under the same conditions
as the previous case (N = 1024 and ζ = {8,16}). Figure 6.6 through Figure 6.8 display the
results comparing the results obtained when using the SNS-CS cueing receiver to those ob-
tained when a random sensing matrix is used. For each SNR examined, the SNS-CS cueing
receiver’s performance was comparable to that of the random sensing matrix. Also, its perfor-
mance degraded more gracefully when the number of tones exceeded the theoretical predic-
tions obtained from Equation (2.17). As seen for the previous case, both compressive sensing
architectures’ performance improved when the SNR was higher (SNR ≥ 20dB). The SNS-CS
receiver’s performance also improved when ζ was larger due to the SNS sample values more
closely approximating the sample values corresponding to those taken at N samples per second.

The next set of moduli examined were mi = {21,22,23,25,29}. Monte Carlo simulations were
conducted for the same conditions examined for the previous two moduli sets. As shown in Fig-
ure 6.9 through Figure 6.11, the performance of the SNS-CS cueing receiver systems closely
approximated the performance of CS systems using equally sized random sensing matrices.
Comparing the results for the three different moduli sets, the increased number of samples due
to additional coprime moduli, increases the number of sinusoids that can be detected as pre-
dicted by Equation (2.17). Also, as shown in Figure 6.3 through Figure 6.11, the SNS-CS cue-
ing receiver’s performance degrades more gracefully than random sensing matrix approaches as
the number of sinusoids present exceeds the maximum value of sparsity from Equation (2.17).
The performance of the three SNS-CS cueing receivers examined are summarized in Table 6.1
and Table 6.2 which list the number of sinusoids that each SNS-CS cueing receiver can resolve
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Figure 6.6: SNS-CS cueing receiver performance: probability of detecting signal frequencies for mi =
{21,22,23,25} and SNR = 30 dB, for (a) N = 1024 and fmax = 32 Hz and(b) N = 1024 and fmax = 64
Hz.
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Figure 6.7: SNS-CS cueing receiver performance: probability of detecting signal frequencies for mi =
{21,22,23,25} and a SNR = 20 dB for (a) N = 1024, and fmax = 32 Hz, and (b) N = 1024, and
fmax = 64 Hz.

with a PD > 0.9 for an SNR of 30 dB, 20 dB, and 10 dB. The theoretical predictions from Equa-
tion (2.17) are also presented. The performance of the SNS-CS cueing receiver is comparable to
the theoretical predictions when the SNR is high and when ζ = 16, the performance exceeded
the theoretical predictions. The number of sinusoids that can be detected decreased with the
SNR as expected. In Figure 6.3 through Figure 6.11, the PD is lower for a signal consisting of
one tone compared to that for a signal consisting of two tones in some of the simulations. Ex-
amining the results of the simulations, this anomaly is due to the SpaRSA algorithm failing to
converge for a limited number of trials resulting in erroneous frequency values being identified.
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Figure 6.8: SNS-CS cueing receiver performance: probability of detecting signal frequencies for mi =
{21,22,23,25} and SNR= 10 dB for (a) N = 1024, and fmax = 32 Hz and (b) N = 1024, and fmax = 64
Hz.

Table 6.1: Number of sinusoids that can be detected with a probability of detection PD ≥ 0.9 with
N = 1024, fmax = 32 Hz.

SNR
mi 30 dB 20 dB 10 dB From Equation (2.17)

{21,22,23} 5 5 4 4

{21,22,23,25} 8 8 5 6

{21,22,23,25,29} 12 11 4 8

For the case of a single tone being present, the algorithm used in [51] can be used to determine
frequencies ≤ M̂SNS.

Monte Carlo simulations were also performed for the same moduli sets and values of ζ with
N = 2048. The results are presented at the end of this chapter in Figure 6.13 through Figure 6.15
and Table 6.4 and Table 6.5. The results are similar to those presented when N = 1024, meeting
or exceeding the predictions of Equation (2.17) when the SNR was high (SNR > 20 dB). The
results also are approximately equal to those obtained when using a random sensing matrix.

The performance of the SNS-CS cueing receiver for each moduli set examined when the SNR
equals 30 dB for N = 1024 and N = 2048 are displayed in Figure 6.12. The curves demonstrate
the advantage of using additional coprime moduli as well as the impact of Equation (2.17) on
the receiver architecture’s performance.
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Figure 6.9: SNS-CS cueing receiver performance: probability of detecting signal frequencies for mi =
{21,22,23,25,29} and SNR = 30 dB for (a) N = 1024 and fmax = 32 Hz and (b) N = 1024 and
fmax = 64 Hz.
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Figure 6.10: SNS-CS cueing receiver performance: probability of detecting signal frequencies for
mi = {21,22,23,25,29} and SNR = 20 dB for (a) N = 1024, and fmax = 32 Hz and (b) N = 1024,
and fmax = 64 Hz.

Table 6.2: Number of sinusoids that can be detected with a probability of detection PD ≥ 0.9 with
N = 1024, fmax = 64 Hz.

SNR
mi 30 dB 20 dB 10 dB From Equation (2.17)

{21,22,23} 3 3 2 4

{21,22,23,25} 5 5 2 6

{21,22,23,25,29} 7 7 0 8
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Figure 6.11: SNS-CS cueing receiver performance: probability of detecting signal frequencies for
mi = {21,22,23,25,29} and SNR = 10 dB for (a) N = 1024 and fmax = 32 Hz and (b) N = 1024 and
fmax = 64 Hz.
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Figure 6.12: Symmetrical number system�compressive sensing cueing receiver performance: (a)N =
1024 and fmax = 64, (b) N = 2048 and fmax = 128.

Comparing the results obtained using SNS-CS cueing receiver architecture to the number of
sinusoids that can be resolved using CRT-based algorithms, the SNS-CS cueing receiver pro-
vides a significant improvement compared to the results in [51] where only a single frequency
alias can be resolved. The SNS-CS cueing receiver also provide improvement compared to
the algorithm presented in [100]. The CRT-based algorithm described in [100] states that if
a complex-valued waveform x(t) contains ρ different frequencies, the ρ frequencies can be
resolved provided the number of coprime sampling rates r is

r = ηρ +θ , 0≤ θ < ρ (6.7)
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Table 6.3: Comparison of the maximum number of sinusoids that are able to be detected by the
SNS-CS cueing receiver to the performance of the CRT based algorithm of [100].

SNS-CS Cueing Receiver CRT Algorithm of [100]
mi Frequencies fmax Frequencies fmax Frequencies fmax

{21,22,23} 3 128 3 23

{21,22,23,25} 5 128 4 25 2 462

{21,22,23,25,29} 7 128 5 29 2 462

where η is a nonnegative integer, and

fmax <max{m,m1, . . . ,mr}, (6.8)

m ,





min1≤i1≤...≤iη≤rlcm{mi1, . . . ,miη}, if η > 0

0, otherwise
, (6.9)

and lcm{•} is the least common multiple function. As an example, when using coprime sam-
pling rates, mi = {21,22,23,25}, from (6.7) through (6.9), four sinusoids can be detected with
fmax < 21 or two sinusoids with fmax = 462. Comparatively, the SNS-CS cueing receiver allows
detecting up to five sinusoids with fmax = 128 with a PD > 0.9 through the use of compressive
sensing as demonstrated in Figure 6.14b and Table 6.4. The results for the other two moduli
sets that were examined are presented in Table 6.3. In each case, the SNS-CS cueing receiver is
capable of identifying more frequencies than the CRT-based algorithm in [100].

Table 6.4: Number of sinusoids that can be detected with a probability of detection PD ≥ 0.9 with
N = 2048, fmax = 128 Hz.

SNR
mi 30 dB 20 dB 10 dB From Equation (2.17)

{21,22,23} 3 3 2 4

{21,22,23,25} 5 5 3 5

{21,22,23,25,29} 7 7 4 7
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Table 6.5: Number of sinusoids that can be detected with probability of detection PD ≥ 0.9 with
N = 2048, fmax = 64 Hz.

SNR
mi 30 dB 20 dB 10 dB From Equation (2.17)

{21,22,23} 4 4 3 4

{21,22,23,25} 6 6 5 5

{21,22,23,25,29} 9 9 6 7

6.3 Concluding Remarks
This chapter examined the performance of the SNS-CS cueing receiver architecture and its
ability to identify the frequency components of a signal with a sparse representation in the
frequency domain. Several SNS-CS cueing receiver architectures were examined, and their
performance was compared to theoretical predictions and the performance of random sensing
matrices. It was demonstrated through Monte Carlo simulations that the SNS-CS cueing re-
ceiver can identify the frequency components of signals sparse in the frequency domain and
that they performed within the parameters predicted by CS theory. Their performance was also
comparable to that of equally sized random sensing matrices with ζ ≥ 16, and the performance
of the SNS-CS cueing receiver degraded more gracefully than the random sensing matrix ap-
proaches as the number of sinusoids present exceeded the value predicted by Equation (2.17).
The performance of the SNS-CS cueing receiver was also examined for different levels of SNR.
When the SNR was large, the SNS-CS cueing receiver performance was near the predictions
from Equation (2.17); however, for low values of SNR, the performance was unsatisfactory
resulting in a low probability of detection due to erroneous frequencies being identified.

The SNS-CS cueing receiver architecture was also compared to the performance of CRT-based
algorithms. It was demonstrated that the SNS-CS cueing receiver allows resolving more fre-
quencies with less channels than the CRT-based algorithms. Therefore, by placing the SNS
into a CS framework, the ability of SNS based undersampling to resolve frequency ambiguities
resulting from aliasing was expanded allowing the identification of an increased number of si-
nusoids using a fixed moduli set. However, the requirement to limit the signal bandwidth based
on a required ζ prevented use of the full dynamic range of the SNS. The bandwidth limitation
imposed by the requirement of maintaining a sufficiently large ζ is not encountered when us-
ing a random sensing matrix. Therefore, CS receiver architectures employing random sensing
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matrices can recover sinusoids within a bandwidth equal to N/2 which is one advantage of CS
receiver architectures using random sensing matrices compared to the SNS-CS cueing receiver.

The SNS-CS cueing receiver architecture allows for detection of the frequencies in a sparse
signal environment and has potential applications as a cueing receiver in EW systems. It also
can be employed in cognitive radio systems to sense the frequency spectrum and determine
which frequency bands are in use. The reduced bandwidth of the SNS-CS cueing receiver in
comparison to that achievable by CS receiver architectures employing random sensing matrices
is a drawback; however, it is offset by the reduced complexity of the sampling process and the
ease of constructing the sensing matrix.

Areas of future research include determining the minimum acceptable value for ζ and the min-
imum acceptable SNR that provide satisfactory system performance. Investigation of system
performance when the signal is composed of sinusoids with non-integer valued frequencies is
another area that requires further research. Additional research areas include implementation of
an SNS-CS cueing receiver in hardware and conducting experimental testing.
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Figure 6.13: Probability of detection for SNS-CS cueing receiver with mi = {21,22,23,25,29} and
N = 2048. fmax = 64 Hz for (a),(c), and (e). fmax = 128 Hz for (b), (d), and (f). SNR = 30 dB in
(a) and (b), SNR = 20 dB in (c) and (d), and SNR = 10 dB in (e) and (f).

151



1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SNR = 30 dB

Number of Tones

P
D

 

 

SNS Sensing Matrix
Random Sensing Matrix

(a)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SNR = 30 dB

Number of Tones

P
D

 

 

SNS Sensing Matrix
Random Sensing Matrix

(b)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SNR = 20 dB

Number of Tones

P
D

 

 

SNS Sensing Matrix
Random Sensing Matrix

(c)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SNR = 20 dB

Number of Tones

P
D

 

 

SNS Sensing Matrix
Random Sensing Matrix

(d)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SNR = 10 dB

Number of Tones

P
D

 

 

SNS Sensing Matrix
Random Sensing Matrix

(e)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SNR = 10 dB

Number of Tones

P
D

 

 

SNS Sensing Matrix
Random Sensing Matrix

(f)

Figure 6.14: Probability of detection for SNS-CS cueing receiver with mi = {21,22,23,25} and N =
2048. fmax = 64 Hz for (a),(c), and (e). fmax = 128 Hz for (b), (d), and (f). SNR = 30 dB in (a)
and (b), SNR = 20 dB in (c) and (d), and SNR = 10 dB in (e) and (f).
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Figure 6.15: Probability of detection for SNS-CS cueing receiver with mi = {21,22,23} and N = 2048.
fmax = 64 Hz for (a),(c), and (e). fmax = 128 Hz for (b), (d), and (f). SNR = 30 dB in (a) and (b),
SNR = 20 dB in (c) and (d), and SNR = 10 dB in (e) and (f).
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CHAPTER 7:

Symmetrical Number System - Nyquist Folding Receiver

This chapter examines a multi-channel NYFR architecture with uniform coprime sampling
(NYFR-B) as an alternate architecture to a single channel NYFR architecture using a non-
uniform sampling as discussed in Section 2.2.7. The NYFR-B architecture uses uniform sam-
pling based on coprime moduli and resolves the signal’s frequency using the properties of the
SNS and the folding receiver. The relationship between the frequency spectrum obtained using
an SNS-based undersampling receiver and that obtained using the NYFR-B architecture is ex-
amined. It is demonstrated that the NYFR-B architecture and the SNS undersampling receiver
architecture produce frequency spectra for each channel where the signal’s energy is concen-
trated in the identical positive digital frequency bin k representing the same baseband frequency
for both receiver architectures. This fact allows the use a constant radix FFT for all channels
allowing faster computations and signal processing compared to that of a multi-channel under-
sampling receiver architecture using different radix DFTs. An envelope approximation detec-
tor (EAD) with GO-CFAR processing [103] is adapted to estimate the magnitude spectrum and
detect the peak values. The use of GO-CFAR processing provides an adaptive detection thresh-
old to compensate for either a colored noise spectra, band limited barrage noise jamming, or
a noise distribution that is not wide sense stationary. The use of the SNS to resolve multiple
frequencies is also examined and the conditions for unambiguous frequency identification are
presented.

7.1 Symmetrical Number System - Nyquist Folding Receiver
(NYFR-B) Concept

A NYFR architecture can be used in a multi-channel undersampling receiver implementation
using uniform coprime sampling rates based upon the SNS moduli. Such a receiver, which is
subsequently referred to as the NYFR-B, allows resolution of frequency ambiguities within the
dynamic range of the SNS M̂SNS while allowing the use of a constant radix FFT across all the
receiver channels. The use of the FFT allows for increased computation speed and reduced
signal processing complexity when compared to a multi-channel SNS-based undersampling
receiver that requires the use of a different radix DFT in each channel. The NYFR-B also
allows simpler implementation and Nyquist zone determination as compared to conventional
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Figure 7.1: L-channel symmetrical number system undersampling receiver. After [51].

single channel NYFR implementation using non-uniform sampling. It is demonstrated that the
frequency spectra obtained by using a set of SNS-based sampling frequencies in an L-channel
undersampling receiver shown in Figure 7.1 is equivalent to that obtained by a NYFR-B receiver
architecture shown in Figure 7.2 where the front-end sampling frequencies fs1, . . . , fsL are equal
to the set of SNS-based co-prime sampling frequencies and the uniform sampling rate at the
ADC is fsADC and fsADC ≥ fsl , where l ∈ {1,2, . . . ,L}.

Examining a single channel of an SNS-based undersampling receiver without the use of a win-
dowing function, if an input signal x(t) is sampled at constant co-prime sampling rate fsl where
l ∈ {1,2,3, ...L}, the resulting signal is

x(nTl) = x(t)
+∞

∑
n=−∞

δ (t−nTl). (7.1)

The Fourier transform of Equation (7.1) is

Xsl( f ) = X( f )∗ fsl

+∞

∑
k=−∞

δ ( f − k fsl) (7.2)
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Figure 7.2: SNS-based NYFR (NYFR-B).

which is equal to

Xsl ( f ) = fsl

+∞

∑
k=−∞

X ( f − k fsl) . (7.3)

As seen in Equation (7.2), the frequency spectrum X( f ) is repeated at multiples of the sampling
frequency; therefore, if fsl/2 < fmax, aliasing occurs mapping frequency components greater
than fsl/2 into the band | f | ≤ fsl/2 which corresponds to the digital frequency band of −π ≤
ω ≤ π . The DFT of the signal xl (n) is equal to

Xl(k) =
Nl−1

∑
n=0

xl [n]e
− j2πkn

Nl (7.4)

for k = 0,1, . . .Nl−1.

In the NYFR-B implementation using a set of SNS-based front-end sampling frequencies, the
frequency spectrum of the signal entering the analog low pass filter (LPF) is equal to Xsl( f ).
The LPF acts as an anti-aliasing filter for the uniform sampler at fsADC limiting the frequency
spectrum to the frequencies composing x(t) and their aliases that lie in the frequency band,
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| f | ≤ fsl/2. The frequency spectrum of the output of the LPF is

Yl( f ) = fsl

+∞

∑
k=−∞

X( f − k fsl)Fl( f ), (7.5)

where Fl ( f ) is an ideal LPF with BW equal to fsl/2. The output frequency spectrum is equal to

Ysl( f ) = fsADCYl ( f )∗
+∞

∑
k=−∞

δ ( f − k fsADC) . (7.6)

And, since no aliasing occurs,

Ysl ( f ) = fsADC fl

+∞

∑
k=−∞

X ( f − k fsl)Fl ( f ) . (7.7)

The DTFT of the signal ysl(n) is equal to

Yl(k) =
NADC−1

∑
n=0

ysl [n]e
− j2πkn
NADC (7.8)

for k = 0,1, . . . ,NADC−1. The inverse Fourier transform (IFT) of Equation (7.6) is

(7.9)ysl(nTADC) =

[
+∞

∑
n=−∞

x(nTl)sinc( fl(t − nTl))

]
×

+∞

∑
l=−∞

δ (t − lTADC)

Equation (7.9) is simplified resulting in

ysl(nTADC) = xl(t)
+∞

∑
l=−∞

δ (t− lTADC) = xl(nTADC). (7.10)

Therefore,

Ysl(k) =
NADC−1

∑
n=0

xl[nTADC]e− j2πkn/NADC (7.11)

for k = 0,1, . . .NADC−1.

The DFTs of Equation (7.4) and Equation (7.11) produce spectra with energy concentrated in
identical bins provided that fsl and fsADC are integer multiples of a base frequency f0 and Nl and
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Figure 7.3: Comparison of the symmetrical residues resulting from a symmetrical number system
(SNS) undersampling receiver and a SNS - Nyquist Folding Receiver (NYFR-B) architecture.

NADC are equal to C fsl and C fsADC where C is an integer constant. The amplitudes of the spectra
differ by a scaling factor. The symmetrical residues for a two channel SNS implementation
and SNS folded receiver implementation are displayed in Figure 7.3 where fsl = {10,11} and
fsADC = 16 and the DFT sizes used are Nl = {10,11} and NADC = 16. As seen in Figure 7.3, the
NYFR-B and the SNS undersampling receiver produce identical symmetrical residues.

7.2 Detection of Multiple Signals Using the Symmetrical Num-
ber System

The SNS was demonstrated to have the capability of resolving single frequency ambiguities
within M̂SNS in [51]. Similarly, an RNS based receiver concept was shown to be able to re-
solve single frequency ambiguities within its dynamic range M. However, if ρ frequencies are
present and a L-channel undersampling receiver is used, each channel will detect potentially ρ
frequencies represented by the residues of the respective SNS or RNS. Therefore, there will be
ρL possible combinations of the L-length vectors to represent the ρ frequencies. As a result,
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more than ρ possible valid SNS or RNS vectors may be formed producing ambiguous results.

In [99], the problem of determining multiple frequencies from a L-channel undersampling re-
ceiver using coprime sampling rates was examined when using the RNS. It was proven that ρ
frequencies can be unambiguously identified provided that

L≥ ηρ +θ (7.12)

where η is a nonnegative integer and the maximum frequency contained in the signal is

fmax <max(m,m1,m2, . . . ,mL) (7.13)

where m= lcm(m1,m2, . . .mη). Since the moduli are coprime, the above statement is equivalent
to fmax being less than the dynamic range of a RNS, composed of the smallest η moduli. As
an example, if L = 4, ρ = 2, and mi = {19,20,21,23}, the maximum frequency that can be
detected unambiguously is fmax < 380 Hz.

The dynamic range of the SNS M̂SNS was shown to be equal to Equation (3.6) and Equa-
tion (3.7). The proof of the expressions for M̂SNS involves the solution of systems of linear
congruence equations using the CRT [51]. Therefore, the conditions in Equation (7.12) can
be used for an undersampling receiver using the SNS provided that the fmax is less than M̂SNS

derived from the smallest η coprime moduli. Simulations were conducted to verify the above
conjecture. For an L = 4 SNS, 1016 different co-prime moduli sets were tested and were veri-
fied to unambiguously resolve all possible permutations of two integer frequencies that are less
than M̂SNS based on the smallest two moduli. Testing was also conducted for an L = 6 SNS, for
two tones being present with fmax < M̂SNS based on the smallest three moduli. All of the 286
moduli sets tested were determined to unambiguously resolve two integer frequencies.

7.3 Symmetrical Number System - Nyquist Folding Receiver
(NYFR-B) Detection and Frequency Resolution Using an
Envelope Approximation Detector with Greatest of Con-
stant False Alarm Rate Processing

The NYFR-B architecture shown in Figure 7.2 uses an EAD with GO-CFAR processing in each
channel. The input to the GO-CFAR processing is the envelope approximation of the frequency
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spectrum of its associated NYFR-B channel. Greatest of constant false alarm rate processing is
conducted for each FFT bin and a vector of frequency bin locations k is output for each channel.
The envelope approximation is equal to

YEAD = amax(|I| , |Q|)+bmin(|I| , |Q|) (7.14)

where I is the in-phase or real component of the frequency spectrum Ym (k), Q is the quadrature
or imaginary component of the frequency spectrum Ym (k) and a and b are constants [103].
Alternately, if software is used for signal processing, the magnitude or envelope of the frequency
spectrum could be used and is determined as

YENV =
√

I2 +Q2. (7.15)

A signal is detected if the envelope approximation of the test cell is greater than an adaptively set
threshold value determined by the GO-CFAR processing. A schematic of GO-CFAR processing
is shown in Figure 7.4. The threshold value is adaptively set based on the greatest of the average
values of the envelope or envelope approximation of two sets of reference cells that are separated
from the test cell by a small guard band. This value estimates the square root of the noise power
in the signal which is multiplied by a threshold multiplying constant T to establish the threshold
value, VT .

The probability of false alarm (PFA) for an EAD using GO-CFAR processing was examined
in [103], and closed-form analytical expressions for the PFA and the threshold multiplier T

were derived through the use of numerical methods and curve fitting techniques. In [103], the
analysis was conducted for an input of AWGN with distribution N (0,1). The analysis shown
below is for an input of zero mean AWGN with an variance equal to σ2. The PFA is equal to

(7.16)PFAa,b = 2
∫ ∞

0
py,n (z)

{∫ z

0
py,n (y)dy

}
×
{∫ ∞

T z
n

pc (x)dx
}

dz

where py,n(y) is the probability density function (pdf) of the sum of reference cells shown in
Figure 7.4 which is an n-fold convolution of the pdf of the test cell or an individual reference
cell,

pc (x) =CeD(x) [Φ( f1 (x))+Φ( f2 (x))]u(x) , (7.17)
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where

C =

√
2

πσ2
√

a2 +b2
, (7.18)

D(x) =− x2

2b2σ2 +
a2x2

2b2σ2 (a2 +b2)
, (7.19)

f1 (x) =
(a

b

) x√
2σ2
√

a2 +b2
, (7.20)

f2 (x) =
(

b
a

)
x√

2σ2
√

a2 +b2
, (7.21)

Φ(•) is the error function,

Φ(γ) =
2√
π

∫ γ

0
e−t2

dt (7.22)

0 1 2 n-2 n-1 n+1 2n-1 2n 
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Figure 7.4: Greatest of constant false alarm rate processing. After [103].
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and, u(x) is the unit step function.

The analysis in [103] is valid for the DFT or FFT of the input signal due to the DFT and FFT
being linear transforms that sum a large number of independent identically distributed random
variables. As a result of the central limit theorem, the DFT or FFT of AWGN is normally
distributed with zero mean and variance equal to Nσ2, if the transform length N is large.

In the simulations conducted, a = 1 and b = 1. Under these conditions, the pdf for a test cell can
be expressed as shown in Equation (7.17) and Equation (7.18) through Equation (7.21). These
equations reduce to:

C =

√ √
2

Nσ2π
(7.23)

D(x) =
−x2

4Nσ2 (7.24)

f1 (x) =
x

2
√

Nσ2
(7.25)

f2 (x) =
x

2
√

Nσ2
(7.26)

Substituting Equation (7.23) through Equation (7.26) into Equation (7.17) and simplifying re-
sults in,

pc (x) = 2

√ √
2

Nσ2π
e
−x2

4Nσ2 Φ
(

x

2
√

Nσ2

)
u(x) . (7.27)

In [103], an analytical formula was determined to calculate the threshold multiplying factor, T ,

T̂ = ã− b̃/β + c̃β , (7.28)

where

β =

{
d̃− ln(PFA)+

√
ẽ+ f̃ ln(PFA)+ ln(PFA)2

}1/3

(7.29)

for the number of reference cells, n≤ 2. When n> 2,

T̂ =

∣∣∣∣ã−
√
−3
2

(
b̃
β
+ c̃β

)
− 1

2

(−b̃
β

+ c̃β
)∣∣∣∣ , (7.30)

163



where

β =

{
d̃ + ln(PFA)+

√
ẽ+ ln(PFA)

√
f̃ + ln(PFA)

}1/3

, (7.31)

and ã, b̃, c̃, d̃, ẽ, and f̃ are the applicable constant values listed in Tables IIB through IXB
in [103]. In the case where a real signal is used and a N-point FFT is performed, a False
Alarm is defined as a detection above the threshold for any of the N/2 positive digital frequency
bins when only noise is present. Therefore, the value of the PFA used in Equation (7.29) and
Equation (7.31) must be modified. Since each frequency bin can be considered independent,
the probability of no false alarm for one frequency bin is

P(no alarm) = 1−PFA. (7.32)

The probability of no alarm in N
2 frequency bins for a real signal is equal to

P
(

no alarm in
N
2

bins
)
= (1−PFA)

N
2 , (7.33)

and the PFA therefore is
PFA∗ = 1− (1−PFA)

N
2 . (7.34)

Solving for PFA in Equation (7.34) yields the value used in Equation (7.29) and Equation (7.31)

PFA = 1− (1−PFA∗)
2
N (7.35)

where PFA∗ is the desired probability of false alarm for the detector.

To resolve the frequency ambiguities due to undersampling, the base band frequencies in each
channel are unfolded through the Nyquist zones that comprise the bandwidth of the wideband
input filter H (ω) shown in Figure 7.1. The possible frequencies corresponding to the baseband
frequencies in each channel are calculated as

~fm =





l fsm−~fbb, l odd

l fsm +~fbb, l even
(7.36)

where l = {0,1,2 . . . ,Lm}, Lm = dBW/ fsm e, d•e is the ceiling operator that rounds the argu-
ment up to the next integer value, and BW is the bandwidth of the filter H (ω). The values
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of the resolved frequency ambiguities are determined by comparing the elements of the fre-
quency vectors ~fm for each channel and determining which frequencies are common among the
channels within the resolution of the FFT.

7.4 Simulation Results
To demonstrate the performance of the NYFR-B receiver concept, Monte Carlo simulations
were conducted using MATLAB for a different moduli sets and different PFAs. The first set of
moduli examined were mi = {97,98,99,101}. The N = 4 SNS sequence enables detection of up
to two frequencies. If the sampling frequencies for each channel are equal to the corresponding
moduli, fmax = 145 Hz, an increase in receiver bandwidth of approximately 287% compared
to the highest SNS-based sampling rate. The sampling rate of the ADC in each channel is
simulated at fsADC = 128 Hz. The Monte Carlo simulations results when a signal consisting
of a single sinusoidal tone with an random integer valued frequency, f ≤ fmax, are displayed
in Figure 7.5. A reference cell length of 16 cells and a guard band length of four cells were
used in the GO-CFAR processing. The probability of detecting the tone and identifying its
frequency correctly is displayed in Figure 7.5a, and the probability of a missed detection is
shown in Figure 7.5b. Monte Carlo simulations were also performed for a signal consisting
of two random integer valued frequency tones with fn ≤ fmax, and the results are presented in
Figure 7.6. The probability of correctly detecting and determining the frequencies contained
in the signal is shown in Figure 7.6a, and the probability of a missed detection is displayed in
Figure 7.6b. The simulations were performed for a PFA = 1×10−2 (1×105 trials), PFA = 1×
10−3 (1×105 trials), and PFA = 1×10−4 (1×106 trials). Comparing the curves in Figure 7.5
and Figure 7.6, an increase in SNR of approximately 2 dB is required for a given probability of
detection as the number of sinusoids contained in the signal increases from one to two. As the
SNR, increases the probability of detection approaches a value of 1−PFA.

Monte Carlo simulations were also performed for a six channel NYFR-B receiver with mi =

{97,98,99,101,103,107} and three frequency tones present. The maximum signal frequency
is fmax = 145 Hz increasing the bandwidth by 271 % compared to Nyquist rate sampling for
the largest moduli. In both the four channel and six channel approach the increase in receiver
BW compared to the ADC sampling frequency is 227%. The results for this case using the
same number of reference cells and guard band length as in the previous case are displayed in
Figure 7.7 through Figure 7.9. As seen in the four channel NYFR-B, approximately a 2 dB
increase in SNR is required to detect each additional tone for a specific PFA. The performance
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Figure 7.5: Four channel NYFR-B: one transmitted tone, (a) probability of detection, (b) probability
of a missed detection.
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Figure 7.6: Four channel NYFR-B: two transmitted tones, (a) probability of detection, (b) probability
of a missed detection.
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Figure 7.7: Six channel NYFR-B: one transmitted tone, (a) probability of detection, (b) probability
of a missed detection.

curves for a four-channel and six-channel NYFR-B are displayed for a PFA = 1×10−3. Com-
paring the curves, the six-channel NYFR-B requires additional SNR to achieve the same PD as
the four-channel NYFR-B.

In the simulation results presented above, the plotted SNR is that of the time domain signal.
However, PD was determined in the frequency domain by comparing each FFT bin to an adap-
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Figure 7.8: Six channel NYFR-B: two transmitted tones, (a) probability of detection, (b) probability
of a missed detection.
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Figure 7.9: Six channel NYFR-B: three transmitted tones, (a) probability of detection, (b) probability
of a missed detection.

tive threshold based on a specified CFAR by adapting the EAD with GO-CFAR processing to
the frequency domain. Therefore, when comparing the results to benchmarks such as those of
a matched filter, the processing gain of the FFT must be considered. The FFT processing gain
depends on the size of the FFT. In the Monte Carlo simulations performed, a 128-point FFT
was used resulting in a processing gain of approximately 21 dB.
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Figure 7.10: Comparison of four and six channel NYFR-B performance.

7.5 Concluding Remarks
In this chapter, it was demonstrated that the residue structure of the SNS is retained when a
multi-channel NYFR architecture is used with constant coprime sampling rates based on the
SNS moduli. This fact allows use of a constant radix FFT across the channels of the receiver
increasing signal processing speeds at the expense of additional hardware when complexity
when compared to the undersampling receiver architecture implementation of [51]. The receiver
architecture utilized an EAD with GO-CFAR processing to estimate the magnitude spectrum
and provide a variable threshold for peak detection. To enable use of the GO-CFAR processing
of the estimated magnitude spectrum, the results presented in [103] were modified through
applying the central limit theorem based on the DFT and FFT being linear transforms. Due
to the different permutations of valid SNS vectors that may exist if more than one frequency
is present, the full range of M̂SNS was not able to be exploited. To determine the number of
frequencies that the receiver could identify unambiguously, a theorem applicable to a RNS
was modified and applied to the SNS. Monte Carlo simulations were then performed for two
separate NYFR-B receiver architectures to develop the performance curves.

The restriction of fmax to allow the unambiguous determination of multiple frequencies using
the SNS reduces the overall advantage gained since the full dynamic range of the L-sequence
SNS is not available. Also, the increase in the hardware requirements are significant for a
modest increase in the number of frequency tones the receiver could detect. To allow use of
the full dynamic range of the SNS, a means of resolving the ambiguities that result from the
permutations of the symmetrical residues is required. One potential avenue that could resolve
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this ambiguity issue is to determine the Nyquist zone of the signals through modulating one of
the NYFR-B channels as described in Section 2.2.7. Further research is required in this area.
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CHAPTER 8:

Concluding Remarks

To effectively counter threat emitters, an EW receiver must accurately determine the emitter’s
location and the signal’s frequency components. Due to the continued evolution of threat emit-
ters that have adopted complex modulations schemes and low-probability-of-intercept tech-
niques, EW receivers are required to obtain these parameters while monitoring an expanding
BW which can exceed 20 GHz. Emerging wideband technologies such as CS and photonics
demonstrate great potential for use in wideband EW receiver systems. Symmetrical number
systems have also been employed in various EW receiver applications such as frequency am-
biguity resolution due to undersampling and minimizing DF antenna array sizes. In this dis-
sertation, symmetrical number systems were employed with photonics and CS to address the
emerging requirements of EW receivers to monitor wider BWs as threat emitters evolve.

One of the most powerful symmetrical number systems is the RSNS due to its inherent integer
Gray code property that can be used to identify and correct coding errors. However, unlike other
symmetrical number systems or residue number systems, there is not a general closed-form an-
alytical expression for M̂RSNS, and closed-form expressions exist for only a few specific cases.
In Chapter 4, an efficient search algorithm was presented for determining M̂RSNS and its com-
putational complexity was examined. The efficient algorithm was then applied to generate data
for different families of moduli sets. Curve fitting algorithms contained in MATLAB’s curve
fitting tool box were then applied to the data to develop polynomial expressions for M̂RSNS for
three sequence and four sequence RSNSs. The polynomial expressions for M̂RSNS were verified
to satisfy the solutions to the congruence equations defining the ambiguity locations. Previously
published work contains only two specific cases for which closed-form expressions for M̂RSNS

exist, Equation (3.21) and Equation (3.22). Chapter 4 presented closed-form expressions for
four additional moduli families for a three-sequence RSNSs. Also, closed-form expressions for
five different families of moduli sets for four-sequence RSNSs were developed and presented.
These are the only identified closed-form solutions for M̂RSNS that have been developed for
four-sequence RSNSs. Future work in this area encompasses identifying additional specific
closed-form expressions for M̂RSNS for different families of moduli sets focused upon identify-
ing a general closed-form expression for the M̂RSNS for a general set of N coprime moduli.

In Chapter 5, it was demonstrated theoretically and verified through simulations and experi-
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mentation that a DE-MZM can be used to perform phase interferometry. Using DE-MZMs, a
linear four-element photonic DF antenna array with RSNS preprocessing was designed, and its
performance was examined through simulations and experimental testing. It was demonstrated
that the photonic DF array provided accurate DOA estimation with fine angular resolution while
maintaining a small array size. The simulations and experimental testing was performed for a
narrow band CW signal at 2.4 GHz. Simulations were also performed in MATLAB to demon-
strate the signal processing required to determine the DOA of more than one pulsed sinusoidal
signal. The results contained in Chapter 5 successfully demonstrate photonic DF array with
RSNS preprocessing concept which warrants future investigation and development for future
use in EW receiver systems. Future work to further develop and mature the application of this
concept include anechoic chamber testing using narrow band components, and modification
of the circuit to use wideband components followed by bench testing and anechoic chamber
testing. Experimental testing with multiple pulsed emitters is also required. Also, integration
of the photonic DF array with RSNS preprocessing with a wide band CS receiver such as the
NYFR and further development of pulse sorting signal processing algorithms provide avenues
for future research.

The use of the SNS was examined in CS receivers to take advantage of the relationship be-
tween the SNS and the DFT [51]. In Chapter 6, a SNS-CS cueing receiver was investigated.
The SNS-CS cueing receiver forms the measurement vector by collating the samples obtained
using coprime sampling rates equal to the SNS moduli. The sensing matrix was formed by
deterministically retaining the rows of a unitary DFT matrix that most closely correspond to the
sample times. The SpaRSA algorithm was applied to estimate the frequency spectrum of the
signal from which the frequency tones composing the signal were identified. The performance
of the SNS-CS cueing receiver was examined through Monte Carlo simulations and the results
were compared to those obtained when a random orthonormal sensing matrix was used. The
results demonstrated that the SNS-CS cueing receiver was capable of accurately resolving the
number of frequencies predicted by CS theory and was comparable to that of random sensing
techniques. Future work includes determining the SNS-CS cueing receiver’s performance when
using greedy recovery algorithms such as OMP, and hardware implementation.

In Chapter 7, a multi-channel NYFR architecture using deterministic coprime sampling based
on the moduli of a SNS was examined. Using a NYFR architecture enabled the use of a com-
mon radix FFT to calculate the residues in each channel instead of different radix DFTs in
each channel. The constant sampling rates also allowed for a simpler implementation of the
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sampling process when compared to the conventional NYFR architecture that uses a modulated
RF sampling clock. The SNS residues, aliased frequencies, were identified in each channel by
adapting a EAD with GO-CFAR processing for use in the frequency domain to allow an adap-
tive threshold to be applied to compensate for a colored noise spectrum, band limited barrage
noise jamming, or a noise distribution that is not wide sense stationary. From the residues,
the actual transmitted frequencies were identified by leveraging the folding properties of the
receiver to identify the common frequency to which each aliased frequency unfolds. Due to the
possibility that permutations of the residues could represent more than one valid SNS code, the
full dynamic range of the SNS could not be exercised and a smaller dynamic range based on ap-
plying Equation (7.12) and Equation (7.13) to the SNS was used. Monte Carlo simulations were
conducted and performance curves were presented for a four-channel and six-channel NYFR-B
receiver architecture. Future research in this area includes examining methods that can be em-
ployed to allow taking advantage of the entire bandwidth provided by the M̂SNS of all moduli
used. By doing so, the number of channels required to identify multiple signals can be re-
duced significantly. One potential method is to apply a modulation to one of the channels of the
NYFR to isolate the Nyquist zone that each sinusoid resides to allow resolution of each signals
frequency and eliminate permutations of the residues that are correspond to frequencies outside
of the identified Nyquist zone. Simulations and hardware testing can also be accomplished to
further develop this CS receiver concept.
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